Results 1  10
of
1,283
Gene selection for cancer classification using support vector machines
 Machine Learning
"... Abstract. DNA microarrays now permit scientists to screen thousands of genes simultaneously and determine whether those genes are active, hyperactive or silent in normal or cancerous tissue. Because these new microarray devices generate bewildering amounts of raw data, new analytical methods must ..."
Abstract

Cited by 1115 (24 self)
 Add to MetaCart
Abstract. DNA microarrays now permit scientists to screen thousands of genes simultaneously and determine whether those genes are active, hyperactive or silent in normal or cancerous tissue. Because these new microarray devices generate bewildering amounts of raw data, new analytical methods must be developed to sort out whether cancer tissues have distinctive signatures of gene expression over normal tissues or other types of cancer tissues. In this paper, we address the problem of selection of a small subset of genes from broad patterns of gene expression data, recorded on DNA microarrays. Using available training examples from cancer and normal patients, we build a classifier suitable for genetic diagnosis, as well as drug discovery. Previous attempts to address this problem select genes with correlation techniques. We propose a new method of gene selection utilizing Support Vector Machine methods based on Recursive Feature Elimination (RFE). We demonstrate experimentally that the genes selected by our techniques yield better classification performance and are biologically relevant to cancer. In contrast with the baseline method, our method eliminates gene redundancy automatically and yields better and more compact gene subsets. In patients with leukemia our method discovered 2 genes that yield zero leaveoneout error, while 64 genes are necessary for the baseline method to get the best result (one leaveoneout error). In the colon cancer database, using only 4 genes our method is 98 % accurate, while the baseline method is only 86 % accurate.
A tutorial on support vector regression
, 2004
"... In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing ..."
Abstract

Cited by 865 (3 self)
 Add to MetaCart
In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 775 (21 self)
 Add to MetaCart
(Show Context)
Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the socalled kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input spaceclassical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied
An introduction to kernelbased learning algorithms
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2001
"... This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and ..."
Abstract

Cited by 598 (55 self)
 Add to MetaCart
This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and
Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data
, 2000
"... Motivation: DNA microarray experiments generating thousands of gene expression measurements, are being used to gather information from tissue and cell samples regarding gene expression differences that will be useful in diagnosing disease. We have developed a new method to analyse this kind of data ..."
Abstract

Cited by 569 (1 self)
 Add to MetaCart
Motivation: DNA microarray experiments generating thousands of gene expression measurements, are being used to gather information from tissue and cell samples regarding gene expression differences that will be useful in diagnosing disease. We have developed a new method to analyse this kind of data using support vector machines (SVMs). This analysis consists of both classification of the tissue samples, and an exploration of the data for mislabeled or questionable tissue results. Results: We demonstrate the method in detail on samples consisting of ovarian cancer tissues, normal ovarian tissues, and other normal tissues. The dataset consists of expression experiment results for 97 802 cDNAs for each tissue. As a result of computational analysis, a tissue sample is discovered and confirmed to be wrongly labeled. Upon correction of this mistake and the removal of an outlier, perfect classification of tissues is achieved, but not with high confidence. We identify and analyse a subset of genes from the ovarian dataset whose expression is highly differentiated between the types of tissues. To show robustness of the SVM method, two previously published datasets from other types of tissues or cells are analysed. The results are comparable to those previously obtained. We show that other machine learning methods also perform comparably to the SVM on many of those datasets. Availability: The SVM software is available at http:// www. cs.columbia.edu/#bgrundy/svm. Contact: booch@cse.ucsc.edu
Pegasos: Primal Estimated subgradient solver for SVM
"... We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a singl ..."
Abstract

Cited by 542 (20 self)
 Add to MetaCart
We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a single training example. In contrast, previous analyses of stochastic gradient descent methods for SVMs require Ω(1/ɛ2) iterations. As in previously devised SVM solvers, the number of iterations also scales linearly with 1/λ, where λ is the regularization parameter of SVM. For a linear kernel, the total runtime of our method is Õ(d/(λɛ)), where d is a bound on the number of nonzero features in each example. Since the runtime does not depend directly on the size of the training set, the resulting algorithm is especially suited for learning from large datasets. Our approach also extends to nonlinear kernels while working solely on the primal objective function, though in this case the runtime does depend linearly on the training set size. Our algorithm is particularly well suited for large text classification problems, where we demonstrate an orderofmagnitude speedup over previous SVM learning methods.
Text Classification using String Kernels
"... We propose a novel approach for categorizing text documents based on the use of a special kernel. The kernel is an inner product in the feature space generated by all subsequences of length k. A subsequence is any ordered sequence of k characters occurring in the text though not necessarily contiguo ..."
Abstract

Cited by 495 (7 self)
 Add to MetaCart
(Show Context)
We propose a novel approach for categorizing text documents based on the use of a special kernel. The kernel is an inner product in the feature space generated by all subsequences of length k. A subsequence is any ordered sequence of k characters occurring in the text though not necessarily contiguously. The subsequences are weighted by anexponentially decaying factor of their full length in the text, hence emphasising those occurrences that are close to contiguous. A direct computation of this feature vector would involve a prohibitive amount of computation even for modest values of k, since the dimension of the feature space grows exponentially with k. The paper describes how despite this fact the inner product can be e ciently evaluated by a dynamic programming technique. Experimental comparisons of the performance of the kernel compared with a standard word feature space kernel Joachims (1998) show positive results on modestly sized datasets. The case of contiguous subsequences is also considered for comparison with the subsequences kernel with di erent decay factors. For larger documents and datasets the paper introduces an approximation technique that is shown to deliver good approximations e ciently for large datasets.
The Landscape of Parallel Computing Research: A View from Berkeley
 TECHNICAL REPORT, UC BERKELEY
, 2006
"... ..."
Choosing multiple parameters for support vector machines
 MACHINE LEARNING
, 2002
"... The problem of automatically tuning multiple parameters for pattern recognition Support Vector Machines (SVMs) is considered. This is done by minimizing some estimates of the generalization error of SVMs using a gradient descent algorithm over the set of parameters. Usual methods for choosing para ..."
Abstract

Cited by 470 (17 self)
 Add to MetaCart
The problem of automatically tuning multiple parameters for pattern recognition Support Vector Machines (SVMs) is considered. This is done by minimizing some estimates of the generalization error of SVMs using a gradient descent algorithm over the set of parameters. Usual methods for choosing parameters, based on exhaustive search become intractable as soon as the number of parameters exceeds two. Some experimental results assess the feasibility of our approach for a large number of parameters (more than 100) and demonstrate an improvement of generalization performance.
Online passiveaggressive algorithms
 JMLR
, 2006
"... We present a unified view for online classification, regression, and uniclass problems. This view leads to a single algorithmic framework for the three problems. We prove worst case loss bounds for various algorithms for both the realizable case and the nonrealizable case. The end result is new alg ..."
Abstract

Cited by 435 (24 self)
 Add to MetaCart
(Show Context)
We present a unified view for online classification, regression, and uniclass problems. This view leads to a single algorithmic framework for the three problems. We prove worst case loss bounds for various algorithms for both the realizable case and the nonrealizable case. The end result is new algorithms and accompanying loss bounds for hingeloss regression and uniclass. We also get refined loss bounds for previously studied classification algorithms.