Results 1  10
of
23
Tensor Decompositions and Applications
 SIAM REVIEW
, 2009
"... This survey provides an overview of higherorder tensor decompositions, their applications, and available software. A tensor is a multidimensional or N way array. Decompositions of higherorder tensors (i.e., N way arrays with N â¥ 3) have applications in psychometrics, chemometrics, signal proce ..."
Abstract

Cited by 705 (17 self)
 Add to MetaCart
(Show Context)
This survey provides an overview of higherorder tensor decompositions, their applications, and available software. A tensor is a multidimensional or N way array. Decompositions of higherorder tensors (i.e., N way arrays with N â¥ 3) have applications in psychometrics, chemometrics, signal processing, numerical linear algebra, computer vision, numerical analysis, data mining, neuroscience, graph analysis, etc. Two particular tensor decompositions can be considered to be higherorder extensions of the matrix singular value decompo
sition: CANDECOMP/PARAFAC (CP) decomposes a tensor as a sum of rankone tensors, and the Tucker decomposition is a higherorder form of principal components analysis. There are many other tensor decompositions, including INDSCAL, PARAFAC2, CANDELINC, DEDICOM, and PARATUCK2 as well as nonnegative variants of all of the above. The Nway Toolbox and Tensor Toolbox, both for MATLAB, and the Multilinear Engine are examples of software packages for working with tensors.
TENSOR RANK AND THE ILLPOSEDNESS OF THE BEST LOWRANK APPROXIMATION PROBLEM
"... There has been continued interest in seeking a theorem describing optimal lowrank approximations to tensors of order 3 or higher, that parallels the Eckart–Young theorem for matrices. In this paper, we argue that the naive approach to this problem is doomed to failure because, unlike matrices, te ..."
Abstract

Cited by 193 (13 self)
 Add to MetaCart
There has been continued interest in seeking a theorem describing optimal lowrank approximations to tensors of order 3 or higher, that parallels the Eckart–Young theorem for matrices. In this paper, we argue that the naive approach to this problem is doomed to failure because, unlike matrices, tensors of order 3 or higher can fail to have best rankr approximations. The phenomenon is much more widespread than one might suspect: examples of this failure can be constructed over a wide range of dimensions, orders and ranks, regardless of the choice of norm (or even Brègman divergence). Moreover, we show that in many instances these counterexamples have positive volume: they cannot be regarded as isolated phenomena. In one extreme case, we exhibit a tensor space in which no rank3 tensor has an optimal rank2 approximation. The notable exceptions to this misbehavior are rank1 tensors and order2 tensors (i.e. matrices). In a more positive spirit, we propose a natural way of overcoming the illposedness of the lowrank approximation problem, by using weak solutions when true solutions do not exist. For this to work, it is necessary to characterize the set of weak solutions, and we do this in the case of rank 2, order 3 (in arbitrary dimensions). In our work we emphasize the importance of closely studying concrete lowdimensional examples as a first step towards more general results. To this end, we present a detailed analysis of equivalence classes of 2 × 2 × 2 tensors, and we develop methods for extending results upwards to higher orders and dimensions. Finally, we link our work to existing studies of tensors from an algebraic geometric point of view. The rank of a tensor can in theory be given a semialgebraic description; in other words, can be determined by a system of polynomial inequalities. We study some of these polynomials in cases of interest to us; in particular we make extensive use of the hyperdeterminant ∆ on R 2×2×2.
Symmetric tensors and symmetric tensor rank
 Scientific Computing and Computational Mathematics (SCCM
, 2006
"... Abstract. A symmetric tensor is a higher order generalization of a symmetric matrix. In this paper, we study various properties of symmetric tensors in relation to a decomposition into a symmetric sum of outer product of vectors. A rank1 orderk tensor is the outer product of k nonzero vectors. An ..."
Abstract

Cited by 101 (22 self)
 Add to MetaCart
(Show Context)
Abstract. A symmetric tensor is a higher order generalization of a symmetric matrix. In this paper, we study various properties of symmetric tensors in relation to a decomposition into a symmetric sum of outer product of vectors. A rank1 orderk tensor is the outer product of k nonzero vectors. Any symmetric tensor can be decomposed into a linear combination of rank1 tensors, each of them being symmetric or not. The rank of a symmetric tensor is the minimal number of rank1 tensors that is necessary to reconstruct it. The symmetric rank is obtained when the constituting rank1 tensors are imposed to be themselves symmetric. It is shown that rank and symmetric rank are equal in a number of cases, and that they always exist in an algebraically closed field. We will discuss the notion of the generic symmetric rank, which, due to the work of Alexander and Hirschowitz, is now known for any values of dimension and order. We will also show that the set of symmetric tensors of symmetric rank at most r is not closed, unless r = 1. Key words. Tensors, multiway arrays, outer product decomposition, symmetric outer product decomposition, candecomp, parafac, tensor rank, symmetric rank, symmetric tensor rank, generic symmetric rank, maximal symmetric rank, quantics AMS subject classifications. 15A03, 15A21, 15A72, 15A69, 15A18 1. Introduction. We
Efficient MATLAB computations with sparse and factored tensors
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 2007
"... In this paper, the term tensor refers simply to a multidimensional or $N$way array, and we consider how specially structured tensors allow for efficient storage and computation. First, we study sparse tensors, which have the property that the vast majority of the elements are zero. We propose stori ..."
Abstract

Cited by 80 (15 self)
 Add to MetaCart
(Show Context)
In this paper, the term tensor refers simply to a multidimensional or $N$way array, and we consider how specially structured tensors allow for efficient storage and computation. First, we study sparse tensors, which have the property that the vast majority of the elements are zero. We propose storing sparse tensors using coordinate format and describe the computational efficiency of this scheme for various mathematical operations, including those typical to tensor decomposition algorithms. Second, we study factored tensors, which have the property that they can be assembled from more basic components. We consider two specific types: A Tucker tensor can be expressed as the product of a core tensor (which itself may be dense, sparse, or factored) and a matrix along each mode, and a Kruskal tensor can be expressed as the sum of rank1 tensors. We are interested in the case where the storage of the components is less than the storage of the full tensor, and we demonstrate that many elementary operations can be computed using only the components. All of the efficiencies described in this paper are implemented in the Tensor Toolbox for MATLAB.
Tensor Decompositions, Alternating Least Squares and Other Tales
 JOURNAL OF CHEMOMETRICS
, 2009
"... This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple “bottlenecks”, and on “swamps”. Existing theoretical results are surveyed, some numerical algorithms are described in details, and their numerical complexity ..."
Abstract

Cited by 33 (9 self)
 Add to MetaCart
This work was originally motivated by a classification of tensors proposed by Richard Harshman. In particular, we focus on simple and multiple “bottlenecks”, and on “swamps”. Existing theoretical results are surveyed, some numerical algorithms are described in details, and their numerical complexity is calculated. In particular, the interest in using the ELS enhancement in these algorithms is discussed. Computer simulations feed this discussion.
Generic and typical ranks of multiway arrays
 Linear Algebra Appl
"... HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte p ..."
Abstract

Cited by 27 (5 self)
 Add to MetaCart
(Show Context)
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et a ̀ la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SUBTRACTING A BEST RANK1 APPROXIMATION MAY INCREASE TENSOR RANK
"... Is has been shown that a best rankR approximation of an orderk tensor may not exist when R ≥ 2 and k ≥ 3. This poses a serious problem to data analysts using Candecomp/Parafac and related models. It has been observed numerically that, generally, this issue cannot be solved by consecutively computi ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
(Show Context)
Is has been shown that a best rankR approximation of an orderk tensor may not exist when R ≥ 2 and k ≥ 3. This poses a serious problem to data analysts using Candecomp/Parafac and related models. It has been observed numerically that, generally, this issue cannot be solved by consecutively computing and substracting best rank1 approximations. The reason for this is that subtracting a best rank1 approximation generally does not decrease tensor rank. In this paper, we provide a mathematical treatment of this property for realvalued 2 × 2 × 2 tensors, with symmetric tensors as a special case. Regardless of the symmetry, we show that for generic 2 × 2 × 2 tensors (which have rank 2 or 3), subtracting a best rank1 approximation will result in a tensor that has rank 3 and lies on the boundary between the rank2 and rank3 sets. Hence, for a typical tensor of rank 2, subtracting a best rank1 approximation has increased the tensor rank.
Lowrank decomposition of multiway arrays: A signal processing perspective
 In IEEE SAM
, 2004
"... In many signal processing applications of linear algebra tools, the signal part of a postulated model lies in a socalled signal subspace, while the parameters of interest are in onetoone correspondence with a certain basis of this subspace. The signal subspace can often be reliably estimated from ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
In many signal processing applications of linear algebra tools, the signal part of a postulated model lies in a socalled signal subspace, while the parameters of interest are in onetoone correspondence with a certain basis of this subspace. The signal subspace can often be reliably estimated from measured data, but the particular basis of interest cannot be identified without additional problemspecific structure. This is a manifestation of rotational indeterminacy, i.e., nonuniqueness of lowrank matrix decomposition. The situation is very different for three or higherway arrays, i.e., arrays indexed by three or more independent variables, for which lowrank decomposition is unique under mild conditions. This has fundamental implications for DSP problems which deal with such data. This paper provides a brief tour of the basic elements of this theory, along with many examples of application in problems of current interest in the signal processing community. Keywords: Threeway analysis, lowrank decomposition, parallel factor analysis (PARAFAC), canonical decomposition (CAN
Generic and typical ranks of threeway arrays
 Research Report ISRN I3S/RR200629FR, I3S, SophiaAntipolis
"... The concept of tensor rank, introduced in the twenties, has been popularized at the beginning of the seventies. This has allowed to carry out Factor Analysis on arrays with more than two indices. The generic rank may be seen as an upper bound to the number of factors that can be extracted from a giv ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
(Show Context)
The concept of tensor rank, introduced in the twenties, has been popularized at the beginning of the seventies. This has allowed to carry out Factor Analysis on arrays with more than two indices. The generic rank may be seen as an upper bound to the number of factors that can be extracted from a given tensor. We explain in this short paper how to obtain numerically the generic rank of tensors of arbitrary dimensions, and compare it with the rare algebraic results already known at order three. In particular, we examine the cases of symmetric tensors, tensors with symmetric matrix slices, or tensors with free entries. Résumé La notion de rang tensoriel, proposée dans les années vingt, a été popularisée au début des années soixantedix. Ceci a permis de mettre en oeuvre l’Analyse de Facteurs sur des tableaux de données comportant plus de deux indices. Le rang générique peut être vu comme une borne supérieure sur le nombre de facteurs pouvant être extraits d’un tenseur donné. Nous expliquons dans ce court article comment trouver numériquement le rang générique d’un tenseur de dimensions arbitraires, et le comparons aux quelques rares résultats algébriques déjà connus à l’ordre trois. Nous examinons notamment les cas des tenseurs symétriques, des tenseurs à tranches matricielles symétriques, ou des tenseurs à éléments libres.
Some Numerical Results on the Rank of Generic ThreeWay Arrays over R
, 2009
"... Abstract. The aim of this paper is the introduction of a new method for the numerical computation of the rank of a threeway array, X ∈ RI×J×K, over R. We show that the rank of a threeway array over R is intimately related to the real solution set of a system of polynomial equations. Using this, we ..."
Abstract
 Add to MetaCart
Abstract. The aim of this paper is the introduction of a new method for the numerical computation of the rank of a threeway array, X ∈ RI×J×K, over R. We show that the rank of a threeway array over R is intimately related to the real solution set of a system of polynomial equations. Using this, we present some numerical results based on the computation of Gröbner bases.