Results 1  10
of
40
The Realizability Approach to Computable Analysis and Topology
, 2000
"... policies, either expressed or implied, of the NSF, NAFSA, or the U.S. government. ..."
Abstract

Cited by 52 (20 self)
 Add to MetaCart
policies, either expressed or implied, of the NSF, NAFSA, or the U.S. government.
Propositions as [Types]
, 2001
"... Image factorizations in regular categories are stable under pullbacks, so they model a natural modal operator in dependent type theory. This unary type constructor [A] has turned up previously in a syntactic form as a way of erasing computational content, and formalizing a notion of proof irrelevanc ..."
Abstract

Cited by 38 (3 self)
 Add to MetaCart
Image factorizations in regular categories are stable under pullbacks, so they model a natural modal operator in dependent type theory. This unary type constructor [A] has turned up previously in a syntactic form as a way of erasing computational content, and formalizing a notion of proof irrelevance. Indeed, semantically, the notion of a support is sometimes used as surrogate proposition asserting inhabitation of an indexed family. We give rules for bracket types in dependent type theory and provide complete semantics using regular categories. We show that dependent type theory with the unit type, strong extensional equality types, strong dependent sums, and bracket types is the internal type theory of regular categories, in the same way that the usual dependent type theory with dependent sums and products is the internal type theory of locally cartesian closed categories. We also show how to interpret rstorder logic in type theory with brackets, and we make use of the translation to compare type theory with logic. Specically, we show that the propositionsastypes interpretation is complete with respect to a certain fragment of intuitionistic rstorder logic. As a consequence, a modied doublenegation translation into type theory (without bracket types) is complete for all of classical rstorder logic.
Domain Representations of Topological Spaces
, 2000
"... A domain representation of a topological space X is a function, usually a quotient map, from a subset of a domain onto X . Several different classes of domain representations are introduced and studied. It is investigated when it is possible to build domain representations from existing ones. It is, ..."
Abstract

Cited by 32 (10 self)
 Add to MetaCart
A domain representation of a topological space X is a function, usually a quotient map, from a subset of a domain onto X . Several different classes of domain representations are introduced and studied. It is investigated when it is possible to build domain representations from existing ones. It is, for example, discussed whether there exists a natural way to build a domain representation of a product of topological spaces from given domain representations of the factors. It is shown that any T 0 topological space has a domain representation. These domain representations are very large. However, smaller domain representations are also constructed for large classes of spaces. For example, each second countable regular Hausdorff space has a domain representation with a countable base. Domain representations of functions and function spaces are also studied.
Topological and Limitspace subcategories of Countablybased Equilogical Spaces
, 2001
"... this paper we show that the two approaches are equivalent for a ..."
Abstract

Cited by 29 (4 self)
 Add to MetaCart
this paper we show that the two approaches are equivalent for a
A Relationship between Equilogical Spaces and Type Two Effectivity
"... In this paper I compare two well studied approaches to topological semantics the domaintheoretic approach, exemplied by the category of countably based equilogical spaces, Equ, and Type Two Eectivity, exemplied by the category of Baire space representations, Rep(B ). These two categories are both ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
In this paper I compare two well studied approaches to topological semantics the domaintheoretic approach, exemplied by the category of countably based equilogical spaces, Equ, and Type Two Eectivity, exemplied by the category of Baire space representations, Rep(B ). These two categories are both locally cartesian closed extensions of countably based T 0 spaces. A natural question to ask is how they are related.
Comparing functional paradigms for exact realnumber computation
 in Proceedings ICALP 2002, Springer LNCS 2380
, 2002
"... Abstract. We compare the definability of total functionals over the reals in two functionalprogramming approaches to exact realnumber datatype of real numbers; and the intensional approach, in which one encodes real numbers using ordinary datatypes. We show that the type hierarchies coincide up to ..."
Abstract

Cited by 19 (4 self)
 Add to MetaCart
Abstract. We compare the definability of total functionals over the reals in two functionalprogramming approaches to exact realnumber datatype of real numbers; and the intensional approach, in which one encodes real numbers using ordinary datatypes. We show that the type hierarchies coincide up to secondorder types, and we relate this fact to an analogous comparison of type hierarchies over the external and internal real numbers in Dana Scott’s category of equilogical spaces. We do not know whether similar coincidences hold at thirdorder types. However, we relate this question to a purely topological conjecture about the KleeneKreisel continuous functionals over the natural numbers. Finally, although it is known that, in the extensional approach, parallel primitives are necessary for programming total firstorder functions, we demonstrate that, in the intensional approach, such primitives are not needed for secondorder types and below. 1
Notions of computability at higher types I
 In Logic Colloquium 2000
, 2005
"... We discuss the conceptual problem of identifying the natural notions of computability at higher types (over the natural numbers). We argue for an eclectic approach, in which one considers a wide range of possible approaches to defining higher type computability and then looks for regularities. As a ..."
Abstract

Cited by 19 (5 self)
 Add to MetaCart
(Show Context)
We discuss the conceptual problem of identifying the natural notions of computability at higher types (over the natural numbers). We argue for an eclectic approach, in which one considers a wide range of possible approaches to defining higher type computability and then looks for regularities. As a first step in this programme, we give an extended survey of the di#erent strands of research on higher type computability to date, bringing together material from recursion theory, constructive logic and computer science. The paper thus serves as a reasonably complete overview of the literature on higher type computability. Two sequel papers will be devoted to developing a more systematic account of the material reviewed here.
Continuous Functionals of Dependent Types and Equilogical Spaces
, 2000
"... . We show that dependent sums and dependent products of continuous parametrizations on domains with dense, codense, and natural totalities agree with dependent sums and dependent products in equilogical spaces, and thus also in the realizability topos RT(P!). Keywords: continuous functionals, depen ..."
Abstract

Cited by 14 (8 self)
 Add to MetaCart
(Show Context)
. We show that dependent sums and dependent products of continuous parametrizations on domains with dense, codense, and natural totalities agree with dependent sums and dependent products in equilogical spaces, and thus also in the realizability topos RT(P!). Keywords: continuous functionals, dependent type theory, domain theory, equilogical spaces. 1 Introduction Recently there has been a lot of interest in understanding notions of totality for domains [3, 23, 4, 18, 21]. There are several reasons for this. Totality is the semantic analogue of termination, and one is naturally interested in understanding not only termination properties of programs but also how notions of program equivalence depend on assumptions regarding termination [21]. Another reason for studying totality on domains is to obtain generalizations of the nitetype hierarchy of total continuous functionals by Kleene and Kreisel [11], see [8] and [19] for good accounts of this subject. Ershov [7] showed how the Klee...
A lambda calculus for real analysis
, 2005
"... Abstract Stone Duality is a revolutionary theory that works directly with computable continuous functions, without using set theory, infinitary lattice theory or a prior theory of discrete computation. Every expression in the calculus denotes both a continuous function and a program, but the reasoni ..."
Abstract

Cited by 14 (0 self)
 Add to MetaCart
Abstract Stone Duality is a revolutionary theory that works directly with computable continuous functions, without using set theory, infinitary lattice theory or a prior theory of discrete computation. Every expression in the calculus denotes both a continuous function and a program, but the reasoning looks remarkably like a sanitised form of that in classical topology. This paper is an introduction to ASD for the general mathematician, and applies it to elementary real analysis. It culminates in the Intermediate Value Theorem, i.e. the solution of equations fx = 0 for continuous f: R → R. As is well known from both numerical and constructive considerations, the equation cannot be solved if f “hovers ” near 0, whilst tangential solutions will never be found. In ASD, both of these failures and the general method of finding solutions of the equation when they exist are explained by the new concept of “overtness”. The zeroes are captured, not as a set, but by highertype operators � and ♦ that remain (Scott) continuous across singularities of a parametric equation. Expressing topology in terms of continuous functions rather than sets of points leads to