Results 1  10
of
572
PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 SIAM J. on Computing
, 1997
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 1278 (4 self)
 Add to MetaCart
(Show Context)
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.
A Fast Quantum Mechanical Algorithm for Database Search
 ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
, 1996
"... Imagine a phone directory containing N names arranged in completely random order. In order to find someone's phone number with a probability of , any classical algorithm (whether deterministic or probabilistic)
will need to look at a minimum of names. Quantum mechanical systems can be in a supe ..."
Abstract

Cited by 1133 (10 self)
 Add to MetaCart
Imagine a phone directory containing N names arranged in completely random order. In order to find someone's phone number with a probability of , any classical algorithm (whether deterministic or probabilistic)
will need to look at a minimum of names. Quantum mechanical systems can be in a superposition of states and simultaneously examine multiple names. By properly adjusting the phases of various operations, successful computations reinforce each other while others interfere randomly. As a result, the desired phone number can be obtained in only steps. The algorithm is within a small constant factor of the fastest possible quantum mechanical algorithm.
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factol: It is not clear whether this is still true when quantum mechanics is taken into consider ..."
Abstract

Cited by 1107 (5 self)
 Add to MetaCart
A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factol: It is not clear whether this is still true when quantum mechanics is taken into consideration. Several researchers, starting with David Deutsch, have developed models for quantum mechanical computers and have investigated their computational properties. This paper gives Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number of steps which is polynomial in the input size, e.g., the number of digits of the integer to be factored. These two problems are generally considered hard on a classical computer and have been used as the basis of several proposed cryptosystems. (We thus give the first examples of quantum cryptanulysis.)
A New Kind of Science
, 2002
"... “Somebody says, ‘You know, you people always say that space is continuous. How do you know when you get to a small enough dimension that there really are enough points in between, that it isn’t just a lot of dots separated by little distances? ’ Or they say, ‘You know those quantum mechanical amplit ..."
Abstract

Cited by 888 (0 self)
 Add to MetaCart
(Show Context)
“Somebody says, ‘You know, you people always say that space is continuous. How do you know when you get to a small enough dimension that there really are enough points in between, that it isn’t just a lot of dots separated by little distances? ’ Or they say, ‘You know those quantum mechanical amplitudes you told me about, they’re so complicated and absurd, what makes you think those are right? Maybe they aren’t right. ’ Such remarks are obvious and are perfectly clear to anybody who is working on this problem. It does not do any good to point this out.” —Richard Feynman [1, p.161]
Strengths and weaknesses of quantum computing
, 1996
"... Recently a great deal of attention has focused on quantum computation following a sequence of results [4, 16, 15] suggesting that quantum computers are more powerful than classical probabilistic computers. Following Shor’s result that factoring and the extraction of discrete logarithms are both solv ..."
Abstract

Cited by 381 (10 self)
 Add to MetaCart
Recently a great deal of attention has focused on quantum computation following a sequence of results [4, 16, 15] suggesting that quantum computers are more powerful than classical probabilistic computers. Following Shor’s result that factoring and the extraction of discrete logarithms are both solvable in quantum polynomial time, it is natural to ask whether all of NP can be efficiently solved in quantum polynomial time. In this paper, we address this question by proving that relative to an oracle chosen uniformly at random, with probability 1, the class NP cannot be solved on a quantum Turing machine in time o(2 n/2). We also show that relative to a permutation oracle chosen uniformly at random, with probability 1, the class NP ∩ co–NP cannot be solved on a quantum Turing machine in time o(2 n/3). The former bound is tight since recent work of Grover [13] shows how to accept the class NP relative to any oracle on a quantum computer in time O(2 n/2).
Quantum Circuit Complexity
, 1993
"... We study a complexity model of quantum circuits analogous to the standard (acyclic) Boolean circuit model. It is shown that any function computable in polynomial time by a quantum Turing machine has a polynomialsize quantum circuit. This result also enables us to construct a universal quantum compu ..."
Abstract

Cited by 319 (1 self)
 Add to MetaCart
We study a complexity model of quantum circuits analogous to the standard (acyclic) Boolean circuit model. It is shown that any function computable in polynomial time by a quantum Turing machine has a polynomialsize quantum circuit. This result also enables us to construct a universal quantum computer which can simulate, with a polynomial factor slowdown, a broader class of quantum machines than that considered by Bernstein and Vazirani [BV93], thus answering an open question raised in [BV93]. We also develop a theory of quantum communication complexity, and use it as a tool to prove that the majority function does not have a linearsize quantum formula. Keywords. Boolean circuit complexity, communication complexity, quantum communication complexity, quantum computation AMS subject classifications. 68Q05, 68Q15 1 This research was supported in part by the National Science Foundation under grant CCR9301430. 1 Introduction One of the most intriguing questions in computation theroy ...
Elementary Gates for Quantum Computation
, 1995
"... We show that a set of gates that consists of all onebit quantum gates (U(2)) and the twobit exclusiveor gate (that maps Boolean values (x, y)to(x, x⊕y)) is universal in the sense that all unitary operations on arbitrarily many bits n (U(2 n)) can be expressed as compositions of these gates. We in ..."
Abstract

Cited by 279 (11 self)
 Add to MetaCart
We show that a set of gates that consists of all onebit quantum gates (U(2)) and the twobit exclusiveor gate (that maps Boolean values (x, y)to(x, x⊕y)) is universal in the sense that all unitary operations on arbitrarily many bits n (U(2 n)) can be expressed as compositions of these gates. We investigate the number of the above gates required to implement other gates, such as generalized DeutschToffoli gates, that apply a specific U(2) transformation to one input bit if and only if the logical AND of all remaining input bits is satisfied. These gates play a central role in many proposed constructions of quantum computational networks. We derive upper and lower bounds on the exact number of elementary gates required to build up a variety of two and threebit quantum gates, the asymptotic number required for nbit DeutschToffoli gates, and make some observations about the number required for arbitrary nbit unitary operations.
Faulttolerant quantum computation
 In Proc. 37th FOCS
, 1996
"... It has recently been realized that use of the properties of quantum mechanics might speed up certain computations dramatically. Interest in quantum computation has since been growing. One of the main difficulties in realizing quantum computation is that decoherence tends to destroy the information i ..."
Abstract

Cited by 264 (5 self)
 Add to MetaCart
It has recently been realized that use of the properties of quantum mechanics might speed up certain computations dramatically. Interest in quantum computation has since been growing. One of the main difficulties in realizing quantum computation is that decoherence tends to destroy the information in a superposition of states in a quantum computer, making long computations impossible. A further difficulty is that inaccuracies in quantum state transformations throughout the computation accumulate, rendering long computations unreliable. However, these obstacles may not be as formidable as originally believed. For any quantum computation with t gates, we show how to build a polynomial size quantum circuit that tolerates O(1 / log c t) amounts of inaccuracy and decoherence per gate, for some constant c; the previous bound was O(1 /t). We do this by showing that operations can be performed on quantum data encoded by quantum errorcorrecting codes without decoding this data. 1.