Results 1  10
of
365
On the optimality of multiantenna broadcast scheduling using zeroforcing beamforming
 IEEE J. SELECT. AREAS COMMUN
, 2006
"... Although the capacity of multipleinput/multipleoutput (MIMO) broadcast channels (BCs) can be achieved by dirty paper coding (DPC), it is difficult to implement in practical systems. This paper investigates if, for a large number of users, simpler schemes can achieve the same performance. Specifica ..."
Abstract

Cited by 307 (4 self)
 Add to MetaCart
Although the capacity of multipleinput/multipleoutput (MIMO) broadcast channels (BCs) can be achieved by dirty paper coding (DPC), it is difficult to implement in practical systems. This paper investigates if, for a large number of users, simpler schemes can achieve the same performance. Specifically, we show that a zeroforcing beamforming (ZFBF) strategy, while generally suboptimal, can achieve the same asymptotic sum capacity as that of DPC, as the number of users goes to infinity. In proving this asymptotic result, we provide an algorithm for determining which users should be active under ZFBF. These users are semiorthogonal to one another and can be grouped for simultaneous transmission to enhance the throughput of scheduling algorithms. Based on the user grouping, we propose and compare two fair scheduling schemes in roundrobin ZFBF and proportionalfair ZFBF. We provide numerical results to confirm the optimality of ZFBF and to compare the performance of ZFBF and proposed fair scheduling schemes with that of various MIMO BC strategies.
Exploiting multiantennas for opportunistic spectrum sharing in cognitive radio networks
 IEEE J. Select. Topics in Signal Processing
, 2008
"... ..."
(Show Context)
Networked MIMO with Clustered Linear Precoding
, 2008
"... A clustered base transceiver station (BTS) coordination strategy is proposed for a large cellular MIMO network, which includes full intracluster coordination–to enhance the sum rate–and limited intercluster coordination–to reduce interference for the cluster edge users. Multicell block diagonaliz ..."
Abstract

Cited by 93 (18 self)
 Add to MetaCart
A clustered base transceiver station (BTS) coordination strategy is proposed for a large cellular MIMO network, which includes full intracluster coordination–to enhance the sum rate–and limited intercluster coordination–to reduce interference for the cluster edge users. Multicell block diagonalization is used to coordinate the transmissions across multiple BTSs in the same cluster. To satisfy perBTS power constraints, three combined precoder and power allocation algorithms are proposed with different performance and complexity tradeoffs. For intercluster coordination, the coordination area is chosen to balance fairness for edge users and the achievable sum rate. It is shown that a small cluster size (about 7 cells) is sufficient to obtain most of the sum rate benefits from clustered coordination while greatly relieving channel feedback requirement. Simulations show that the proposed coordination strategy efficiently reduces interference and provides a considerable sum rate gain for cellular MIMO networks.
Degrees of freedom region of the MIMO . . .
, 2008
"... We provide achievability as well as converse results for the degrees of freedom region of a multipleinput multipleoutput (MIMO) X channel, i.e., a system with two transmitters, two receivers, each equipped with multiple antennas, where independent messages need to be conveyed over fixed channels fr ..."
Abstract

Cited by 92 (19 self)
 Add to MetaCart
We provide achievability as well as converse results for the degrees of freedom region of a multipleinput multipleoutput (MIMO) X channel, i.e., a system with two transmitters, two receivers, each equipped with multiple antennas, where independent messages need to be conveyed over fixed channels from each transmitter to each receiver. The inner and outer bounds on the degrees of freedom region are tight whenever integer degrees of freedom are optimal for each message. With M =1antennas at each node, we find that the total (sum rate) degrees of freedom are bounded above and below as 1? 4 X.IfM>1 and channel
Degrees of freedom region of the MIMO X Channel
, 2007
"... hop, is especially interesting, as the intermediate hop takes place over an interference channel with single antenna nodes. While the two user interference channel with single antenna nodes has only one degree of freedom by itself, it is able to deliver degrees of freedom when used as an intermediat ..."
Abstract

Cited by 92 (28 self)
 Add to MetaCart
hop, is especially interesting, as the intermediate hop takes place over an interference channel with single antenna nodes. While the two user interference channel with single antenna nodes has only one degree of freedom by itself, it is able to deliver degrees of freedom when used as an intermediate stage between a antenna source and a antenna destination [5]. The key is an amplify and forward scheme where the relay nodes, instead of trying to decode the messages, simply scale and forward their received signals. [1]–[3] consider end to end channel orthogonalization with distributed sources, relays and destination nodes and determine the capacity scaling behavior with the number of relay nodes. It is shown that distributed orthogonalization can be obtained even with synchronization errors if a minimum amount of coherence at the relays can be sustained. Degrees of freedom for linear interference networks with local sideinformation are explored in [22] and cognitive message sharing is found to improve the degrees of freedom for certain structured channel matrices. The MIMO MAC and BC channels show that there is no loss in degrees of freedom even if antennas are distributed among users at one end (either transmitters or receivers) making joint signal processing infeasible, as long as joint signal processing is possible at the other end of the communication link. The multiple hop example of [5], described above, shows that there is no loss of degrees of freedom even with distributed antennas at both ends of a communication hop (an interference channel) as long as the distributed antenna stages are only intermediate
Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization,”
 IEEE Trans. Signal Process,
, 2006
"... ..."
(Show Context)
Zero Forcing Precoding and Generalized Inverses
"... We consider the problem of linear zero forcing precoding design, and discuss its relation to the theory of generalized inverses in linear algebra. Special attention is given to a specific generalized inverse known as the pseudoinverse. We begin with the standard design under the assumption of a tot ..."
Abstract

Cited by 52 (0 self)
 Add to MetaCart
(Show Context)
We consider the problem of linear zero forcing precoding design, and discuss its relation to the theory of generalized inverses in linear algebra. Special attention is given to a specific generalized inverse known as the pseudoinverse. We begin with the standard design under the assumption of a total power constraint and prove that precoders based on the pseudoinverse are optimal in this setting. Then, we proceed to examine individual perantenna power constraints. In this case, the pseudoinverse is not necessarily the optimal generalized inverse. In fact, finding the optimal inverse is nontrivial and depends on the specific performance measure. We address two common criteria, fairness and throughput, and show that the optimal matrices may be found using standard convex optimization methods. We demonstrate the improved performance offered by our approach using computer simulations.
Dynamic resource allocation in cognitive radio networks
 IEEE Signal Process. Mag
, 2010
"... ar ..."
(Show Context)
Multiuser MIMOOFDM for NextGeneration Wireless Systems
, 2007
"... This overview portrays the 40year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multipleinput multipleoutput (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highl ..."
Abstract

Cited by 47 (5 self)
 Add to MetaCart
This overview portrays the 40year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multipleinput multipleoutput (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the socalled rankdeficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their stateoftheart solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMOOFDM systems and characterizes their achievable performance. A further section aims for identifying novel cuttingedge genetic algorithm (GA)aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GAassisted optimization techniques, which were recently proposed also
From Single user to Multiuser Communications: Shifting the MIMO paradigm
 IEEE Sig. Proc. Magazine
, 2007
"... In multiuser MIMO networks, the spatial degrees of freedom offered by multiple antennas can be advantageously exploited to enhance the system capacity, by scheduling multiple users to simultaneously share the spatial channel. This entails a fundamental paradigm shift from single user communications, ..."
Abstract

Cited by 46 (13 self)
 Add to MetaCart
(Show Context)
In multiuser MIMO networks, the spatial degrees of freedom offered by multiple antennas can be advantageously exploited to enhance the system capacity, by scheduling multiple users to simultaneously share the spatial channel. This entails a fundamental paradigm shift from single user communications, since multiuser systems can experience substantial benefit from channel state information at the transmitter and, at the same time, require more complex scheduling strategies and transceiver methodologies. This paper reviews multiuser MIMO communication from an algorithmic perspective, discussing performance gains, tradeoffs, and practical considerations. Several approaches including nonlinear and linear channelaware precoding are reviewed, along with more practical limited feedback schemes that require only partial channel state information. The interaction between precoding and scheduling is discussed. Several promising strategies for limited multiuser feedback design are looked at, some of which are inspired from the single user MIMO precoding scenario while others are fully specific to the multiuser setting. 1 DRAFT