Results 1  10
of
303
DeNoising By SoftThresholding
, 1992
"... Donoho and Johnstone (1992a) proposed a method for reconstructing an unknown function f on [0; 1] from noisy data di = f(ti)+ zi, iid i =0;:::;n 1, ti = i=n, zi N(0; 1). The reconstruction fn ^ is de ned in the wavelet domain by translating all the empirical wavelet coe cients of d towards 0 by an a ..."
Abstract

Cited by 1248 (14 self)
 Add to MetaCart
Donoho and Johnstone (1992a) proposed a method for reconstructing an unknown function f on [0; 1] from noisy data di = f(ti)+ zi, iid i =0;:::;n 1, ti = i=n, zi N(0; 1). The reconstruction fn ^ is de ned in the wavelet domain by translating all the empirical wavelet coe cients of d towards 0 by an amount p 2 log(n) = p n. We prove two results about that estimator. [Smooth]: With high probability ^ fn is at least as smooth as f, in any of a wide variety of smoothness measures. [Adapt]: The estimator comes nearly as close in mean square to f as any measurable estimator can come, uniformly over balls in each of two broad scales of smoothness classes. These two properties are unprecedented in several ways. Our proof of these results develops new facts about abstract statistical inference and its connection with an optimal recovery model.
Wavelet shrinkage: asymptopia
 Journal of the Royal Statistical Society, Ser. B
, 1995
"... Considerable e ort has been directed recently to develop asymptotically minimax methods in problems of recovering in nitedimensional objects (curves, densities, spectral densities, images) from noisy data. A rich and complex body of work has evolved, with nearly or exactly minimax estimators bein ..."
Abstract

Cited by 293 (35 self)
 Add to MetaCart
(Show Context)
Considerable e ort has been directed recently to develop asymptotically minimax methods in problems of recovering in nitedimensional objects (curves, densities, spectral densities, images) from noisy data. A rich and complex body of work has evolved, with nearly or exactly minimax estimators being obtained for a variety of interesting problems. Unfortunately, the results have often not been translated into practice, for a variety of reasons { sometimes, similarity to known methods, sometimes, computational intractability, and sometimes, lack of spatial adaptivity. We discuss a method for curve estimation based on n noisy data; one translates the empirical wavelet coe cients towards the origin by an amount p p 2 log(n) = n. The method is di erent from methods in common use today, is computationally practical, and is spatially adaptive; thus it avoids a number of previous objections to minimax estimators. At the same time, the method is nearly minimax for a wide variety of loss functions { e.g. pointwise error, global error measured in L p norms, pointwise and global error in estimation of derivatives { and for a wide range of smoothness classes, including standard Holder classes, Sobolev classes, and Bounded Variation. This is amuch broader nearoptimality than anything previously proposed in the minimax literature. Finally, the theory underlying the method is interesting, as it exploits a correspondence between statistical questions and questions of optimal recovery and informationbased complexity.
A Survey of Computational Complexity Results in Systems and Control
, 2000
"... The purpose of this paper is twofold: (a) to provide a tutorial introduction to some key concepts from the theory of computational complexity, highlighting their relevance to systems and control theory, and (b) to survey the relatively recent research activity lying at the interface between these fi ..."
Abstract

Cited by 186 (18 self)
 Add to MetaCart
The purpose of this paper is twofold: (a) to provide a tutorial introduction to some key concepts from the theory of computational complexity, highlighting their relevance to systems and control theory, and (b) to survey the relatively recent research activity lying at the interface between these fields. We begin with a brief introduction to models of computation, the concepts of undecidability, polynomial time algorithms, NPcompleteness, and the implications of intractability results. We then survey a number of problems that arise in systems and control theory, some of them classical, some of them related to current research. We discuss them from the point of view of computational complexity and also point out many open problems. In particular, we consider problems related to stability or stabilizability of linear systems with parametric uncertainty, robust control, timevarying linear systems, nonlinear and hybrid systems, and stochastic optimal control.
Unconditional bases are optimal bases for data compression and for statistical estimation
 Applied and Computational Harmonic Analysis
, 1993
"... An orthogonal basis of L 2 which is also an unconditional basis of a functional space F is a kind of optimal basis for compressing, estimating, and recovering functions in F. Simple thresholding operations, applied in the unconditional basis, work essentially better for compressing, estimating, and ..."
Abstract

Cited by 173 (22 self)
 Add to MetaCart
(Show Context)
An orthogonal basis of L 2 which is also an unconditional basis of a functional space F is a kind of optimal basis for compressing, estimating, and recovering functions in F. Simple thresholding operations, applied in the unconditional basis, work essentially better for compressing, estimating, and recovering than they do in any other orthogonal basis. In fact, simple thresholding in an unconditional basis works essentially better for recovery and estimation than other methods, period. (Performance is measured in an asymptotic minimax sense.) As an application, we formalize and prove Mallat's Heuristic, which says that wavelet bases are optimal for representing functions containing singularities, when there may be an arbitrary number of singularities, arbitrarily distributed.
Using Randomization to Break the Curse of Dimensionality
 Econometrica
, 1997
"... Abstract: This paper introduces random versions of successive approximations and multigrid algorithms for computing approximate solutions to a class of finite and infinite horizon Markovian decision problems (MDPs). We prove that these algorithms succeed in breaking the “curse of dimensionality ” fo ..."
Abstract

Cited by 121 (0 self)
 Add to MetaCart
Abstract: This paper introduces random versions of successive approximations and multigrid algorithms for computing approximate solutions to a class of finite and infinite horizon Markovian decision problems (MDPs). We prove that these algorithms succeed in breaking the “curse of dimensionality ” for a subclass of MDPs known as discrete decision processes (DDPs). 1
Optimal Order of Convergence and (In) Tractability of Multivariate Approximation of Smooth Functions
, 2008
"... The consecutive numbering of the publications is determined by their chronological order. The aim of this preprint series is to make new research rapidly available for scientific discussion. Therefore, the responsibility for the contents is solely due to the authors. The publications will be distrib ..."
Abstract

Cited by 120 (1 self)
 Add to MetaCart
The consecutive numbering of the publications is determined by their chronological order. The aim of this preprint series is to make new research rapidly available for scientific discussion. Therefore, the responsibility for the contents is solely due to the authors. The publications will be distributed by the authors.
Numerical Integration using Sparse Grids
 NUMER. ALGORITHMS
, 1998
"... We present and review algorithms for the numerical integration of multivariate functions defined over ddimensional cubes using several variants of the sparse grid method first introduced by Smolyak [51]. In this approach, multivariate quadrature formulas are constructed using combinations of tensor ..."
Abstract

Cited by 83 (16 self)
 Add to MetaCart
(Show Context)
We present and review algorithms for the numerical integration of multivariate functions defined over ddimensional cubes using several variants of the sparse grid method first introduced by Smolyak [51]. In this approach, multivariate quadrature formulas are constructed using combinations of tensor products of suited onedimensional formulas. The computing cost is almost independent of the dimension of the problem if the function under consideration has bounded mixed derivatives. We suggest the usage of extended Gauss (Patterson) quadrature formulas as the onedimensional basis of the construction and show their superiority in comparison to previously used sparse grid approaches based on the trapezoidal, ClenshawCurtis and Gauss rules in several numerical experiments and applications.
Modeling Model Uncertainty
 Journal of the European Economic Assocation
, 2003
"... Recently there has been a great deal of interest in studying monetary policy under model uncertainty. We point out that different assumptions about the uncertainty may result in drastically different “robust ” policy recommendations. Therefore, we develop new methods to analyze uncertainty about the ..."
Abstract

Cited by 82 (9 self)
 Add to MetaCart
Recently there has been a great deal of interest in studying monetary policy under model uncertainty. We point out that different assumptions about the uncertainty may result in drastically different “robust ” policy recommendations. Therefore, we develop new methods to analyze uncertainty about the parameters of a model, the lag specification, the serial correlation of shocks, and the effects of real time data in one coherent structure. We consider both parametric and nonparametric specifications of this structure and use them to estimate the uncertainty in a small model of the US economy. We then use our estimates to compute robust Bayesian and minimax monetary policy rules, which are designed to perform well in the face of uncertainty. Our results suggest that the aggressiveness recently found in robust policy rules is likely to be caused by overemphasizing uncertainty about economic dynamics at low frequencies.