Results 1  10
of
31
The type theoretic interpretation of Constructive Set Theory: inductive definitions
 Logic, Methodology and Philosophy of Science VII
, 1986
"... Abstract. We present a generalisation of the typetheoretic interpretation of constructive set theory into MartinLöf type theory. The original interpretation treated logic in MartinLöf type theory via the propositionsastypes interpretation. The generalisation involves replacing MartinLöf type ..."
Abstract

Cited by 148 (9 self)
 Add to MetaCart
(Show Context)
Abstract. We present a generalisation of the typetheoretic interpretation of constructive set theory into MartinLöf type theory. The original interpretation treated logic in MartinLöf type theory via the propositionsastypes interpretation. The generalisation involves replacing MartinLöf type theory with a new type theory in which logic is treated as primitive. The primitive treatment of logic in type theories allows us to study reinterpretations of logic, such as the doublenegation translation. Introduction. The typetheoretic interpretation of Constructive ZermeloFrankel set theory, or CZF for short, provides an explicit link between constructive set theory and MartinLöf type theory A crucial component of the original typetheoretic interpretation of CZF is the propositionsastypes interpretation of logic. Under this interpretation, arbitrary formulas of CZF are interpreted as types, and restricted formulas as small types. By a small type we mean here a type represented by an element of the type universe that is part of the type theory in which CZF is interpreted. The propositionsastypes representation of logic is used in proving the validity of three schemes of CZF, namely Restricted Separation, Strong Collection, and Subset Collection. Validity of Restricted Separation follows from the representation of restricted propositions as small types, while the validity of both Strong Collection and Subset Collection follows from the typetheoretic axiom of choice, that holds in the propositionsastypes interpretation of logic Our first aim here is to present a new typetheoretic interpretation of CZF. The novelty lies in replacing the pure type theory like ML 1 + W with a suitable logicenriched type theory. By a logicenriched intuitionistic type theory we mean an
A General Formulation of Simultaneous InductiveRecursive Definitions in Type Theory
 Journal of Symbolic Logic
, 1998
"... The first example of a simultaneous inductiverecursive definition in intuitionistic type theory is MartinLöf's universe à la Tarski. A set U0 of codes for small sets is generated inductively at the same time as a function T0 , which maps a code to the corresponding small set, is defined by re ..."
Abstract

Cited by 77 (9 self)
 Add to MetaCart
(Show Context)
The first example of a simultaneous inductiverecursive definition in intuitionistic type theory is MartinLöf's universe à la Tarski. A set U0 of codes for small sets is generated inductively at the same time as a function T0 , which maps a code to the corresponding small set, is defined by recursion on the way the elements of U0 are generated. In this paper we argue that there is an underlying general notion of simultaneous inductiverecursive definition which is implicit in MartinLöf's intuitionistic type theory. We extend previously given schematic formulations of inductive definitions in type theory to encompass a general notion of simultaneous inductionrecursion. This enables us to give a unified treatment of several interesting constructions including various universe constructions by Palmgren, Griffor, Rathjen, and Setzer and a constructive version of Aczel's Frege structures. Consistency of a restricted version of the extension is shown by constructing a realisability model ...
A finite axiomatization of inductiverecursive definitions
 Typed Lambda Calculi and Applications, volume 1581 of Lecture Notes in Computer Science
, 1999
"... Inductionrecursion is a schema which formalizes the principles for introducing new sets in MartinLöf’s type theory. It states that we may inductively define a set while simultaneously defining a function from this set into an arbitrary type by structural recursion. This extends the notion of an in ..."
Abstract

Cited by 51 (15 self)
 Add to MetaCart
(Show Context)
Inductionrecursion is a schema which formalizes the principles for introducing new sets in MartinLöf’s type theory. It states that we may inductively define a set while simultaneously defining a function from this set into an arbitrary type by structural recursion. This extends the notion of an inductively defined set substantially and allows us to introduce universes and higher order universes (but not a Mahlo universe). In this article we give a finite axiomatization of inductiverecursive definitions. We prove consistency by constructing a settheoretic model which makes use of one Mahlo cardinal. 1
Wellfounded Trees and Dependent Polynomial Functors
 OF LECTURE NOTES IN COMPUTER SCIENCE
, 2004
"... We set out to study the consequences of the assumption of types of wellfounded trees in dependent type theories. We do so by investigating the categorical notion of wellfounded tree introduced in [16]. Our main result shows that wellfounded trees allow us to define initial algebras for a wide class ..."
Abstract

Cited by 39 (6 self)
 Add to MetaCart
We set out to study the consequences of the assumption of types of wellfounded trees in dependent type theories. We do so by investigating the categorical notion of wellfounded tree introduced in [16]. Our main result shows that wellfounded trees allow us to define initial algebras for a wide class of endofunctors on locally cartesian closed categories.
On universes in type theory
 191 – 204
, 1998
"... The notion of a universe of types was introduced into constructive type theory by MartinLöf (1975). According to the propositionsastypes principle inherent in ..."
Abstract

Cited by 35 (8 self)
 Add to MetaCart
(Show Context)
The notion of a universe of types was introduced into constructive type theory by MartinLöf (1975). According to the propositionsastypes principle inherent in
Wellordering proofs for MartinLöf Type Theory
 Annals of Pure and Applied Logic
, 1998
"... We present wellordering proofs for MartinLof's type theory with Wtype and one universe. These proofs, together with an embedding of the type theory in a set theoretical system as carried out in [Set93] show that the proof theoretical strength of the type theory is precisely ## 1# I+# , whi ..."
Abstract

Cited by 24 (11 self)
 Add to MetaCart
(Show Context)
We present wellordering proofs for MartinLof's type theory with Wtype and one universe. These proofs, together with an embedding of the type theory in a set theoretical system as carried out in [Set93] show that the proof theoretical strength of the type theory is precisely ## 1# I+# , which is slightly more than the strength of Feferman's theory T 0 , classical set theory KPI and the subsystem of analysis (# 1 2 CA)+(BI). The strength of intensional and extensional version, of the version a la Tarski and a la Russell are shown to be the same. 0 Introduction 0.1 Proof theory and Type Theory Proof theory and type theory have been two answers of mathematical logic to the crisis of the foundations of mathematics at the beginning of the century. Proof theory was originally established by Hilbert in order to prove the consistency of theories by using finitary methods. When Godel showed that Hilbert's program cannot be carried out as originally intended, the focus of proof theory ch...
Intepreting classical theories in constructive ones
"... Abstract. A number of classical theories are interpreted in analogous theories that are based on intuitionistic logic. The classical theories considered include subsystems of first and secondorder arithmetic, bounded arithmetic, and admissible set theory.?1. Introduction. Proof theory was develop ..."
Abstract

Cited by 24 (13 self)
 Add to MetaCart
(Show Context)
Abstract. A number of classical theories are interpreted in analogous theories that are based on intuitionistic logic. The classical theories considered include subsystems of first and secondorder arithmetic, bounded arithmetic, and admissible set theory.?1. Introduction. Proof theory was developed, in part, as a way to reconcile classical and constructive aspects of mathematical reasoning. Given this historical fact, it is not surprising that over the years proof theorists have invested a good deal of effort in reducing classical theories to constructive ones. Elegant in its simplicity, the G6delGentzen doublenegation interpretation works
Collection Principles in Dependent Type Theory
 Types for Proofs and Programs, International Workshop, TYPES 2000
, 2001
"... We introduce logicenriched intuitionistic type theories, that extend intuitionistic dependent type theories with primitive judgements to express logic. By adding type theoretic rules that correspond to the collection axiom schemes of the constructive set theory CZF we obtain a generalisation of ..."
Abstract

Cited by 19 (3 self)
 Add to MetaCart
We introduce logicenriched intuitionistic type theories, that extend intuitionistic dependent type theories with primitive judgements to express logic. By adding type theoretic rules that correspond to the collection axiom schemes of the constructive set theory CZF we obtain a generalisation of the type theoretic interpretation of CZF. Suitable logicenriched type theories allow also the study of reinterpretations of logic. We end the paper with an application to the doublenegation interpretation.
Intuitionistic Choice and Classical Logic
 Arch. Math. Logic
, 1997
"... this paper we show how to combine the unrestricted countable choice, induction on infinite wellfounded trees and restricted classical logic in a constructively given model. For readers faniliar with intuitionistic systems [14], we may succinctly describe the theory we interpret as follows. Expand t ..."
Abstract

Cited by 17 (4 self)
 Add to MetaCart
(Show Context)
this paper we show how to combine the unrestricted countable choice, induction on infinite wellfounded trees and restricted classical logic in a constructively given model. For readers faniliar with intuitionistic systems [14], we may succinctly describe the theory we interpret as follows. Expand the extensional version of HA