Results 1  10
of
521
Models and issues in data stream systems
 IN PODS
, 2002
"... In this overview paper we motivate the need for and research issues arising from a new model of data processing. In this model, data does not take the form of persistent relations, but rather arrives in multiple, continuous, rapid, timevarying data streams. In addition to reviewing past work releva ..."
Abstract

Cited by 770 (19 self)
 Add to MetaCart
(Show Context)
In this overview paper we motivate the need for and research issues arising from a new model of data processing. In this model, data does not take the form of persistent relations, but rather arrives in multiple, continuous, rapid, timevarying data streams. In addition to reviewing past work relevant to data stream systems and current projects in the area, the paper explores topics in stream query languages, new requirements and challenges in query processing, and algorithmic issues.
Mtree: An Efficient Access Method for Similarity Search in Metric Spaces
, 1997
"... A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion o ..."
Abstract

Cited by 652 (38 self)
 Add to MetaCart
A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion of objects and split management, whF h keep th Mtree always balanced  severalheralvFV split alternatives are considered and experimentally evaluated. Algorithd for similarity (range and knearest neigh bors) queries are also described. Results from extensive experimentationwith a prototype system are reported, considering as th performance criteria th number of page I/O's and th number of distance computations. Th results demonstratethm th Mtree indeed extendsth domain of applicability beyond th traditional vector spaces, performs reasonably well inhE[94Kv#E44V[vh data spaces, and scales well in case of growing files. 1
Data Mining: An Overview from Database Perspective
 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
, 1996
"... Mining information and knowledge from large databases has been recognized by many researchers as a key research topic in database systems and machine learning, and by many industrial companies as an important area with an opportunity of major revenues. Researchers in many different fields have sh ..."
Abstract

Cited by 514 (26 self)
 Add to MetaCart
Mining information and knowledge from large databases has been recognized by many researchers as a key research topic in database systems and machine learning, and by many industrial companies as an important area with an opportunity of major revenues. Researchers in many different fields have shown great interest in data mining. Several emerging applications in information providing services, such as data warehousing and online services over the Internet, also call for various data mining techniques to better understand user behavior, to improve the service provided, and to increase the business opportunities. In response to such a demand, this article is to provide a survey, from a database researcher's point of view, on the data mining techniques developed recently. A classification of the available data mining techniques is provided and a comparative study of such techniques is presented.
Survey of clustering data mining techniques
, 2002
"... Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in math ..."
Abstract

Cited by 400 (0 self)
 Add to MetaCart
(Show Context)
Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in mathematics, statistics, and numerical analysis. From a machine learning perspective clusters correspond to hidden patterns, the search for clusters is unsupervised learning, and the resulting system represents a data concept. From a practical perspective clustering plays an outstanding role in data mining applications such as scientific data exploration, information retrieval and text mining, spatial database applications, Web analysis, CRM, marketing, medical diagnostics, computational biology, and many others. Clustering is the subject of active research in several fields such as statistics, pattern recognition, and machine learning. This survey focuses on clustering in data mining. Data mining adds to clustering the complications of very large datasets with very many attributes of different types. This imposes unique
Similarity Indexing with the SStree
 In Proceedings of the 12th International Conference on Data Engineering
, 1996
"... jain0ece.ucsd.edu ..."
On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration
 SIGKDD'02
, 2002
"... ... mining time series data. Literally hundreds of papers have introduced new algorithms to index, classify, cluster and segment time series. In this work we make the following claim. Much of this work has very little utility because the contribution made (speed in the case of indexing, accuracy in ..."
Abstract

Cited by 311 (57 self)
 Add to MetaCart
... mining time series data. Literally hundreds of papers have introduced new algorithms to index, classify, cluster and segment time series. In this work we make the following claim. Much of this work has very little utility because the contribution made (speed in the case of indexing, accuracy in the case of classification and clustering, model accuracy in the case of segmentation) offer an amount of "improvement" that would have been completely dwarfed by the variance that would have been observed by testing on many real world datasets, or the variance that would have been observed by changing minor (unstated) implementation details. To illustrate our point
Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases
 In proceedings of ACM SIGMOD Conference on Management of Data
, 2002
"... Similarity search in large time series databases has attracted much research interest recently. It is a difficult problem because of the typically high dimensionality of the data.. The most promising solutions' involve performing dimensionality reduction on the data, then indexing the reduced d ..."
Abstract

Cited by 311 (32 self)
 Add to MetaCart
(Show Context)
Similarity search in large time series databases has attracted much research interest recently. It is a difficult problem because of the typically high dimensionality of the data.. The most promising solutions' involve performing dimensionality reduction on the data, then indexing the reduced data with a multidimensional index structure. Many dimensionality reduction techniques have been proposed, including Singular Value Decomposition (SVD), the Discrete Fourier transform (DFT), and the Discrete Wavelet Transform (DWT). In this work we introduce a new dimensionality reduction technique which we call Adaptive Piecewise Constant Approximation (APCA). While previous techniques (e.g., SVD, DFT and DWT) choose a common representation for all the items in the database that minimizes the global reconstruction error, APCA approximates each time series by a set of constant value segments' of varying lengths' such that their individual reconstruction errors' are minimal. We show how APCA can be indexed using a multidimensional index structure. We propose two distance measures in the indexed space that exploit the high fidelity of APCA for fast searching: a lower bounding Euclidean distance approximation, and a nonlower bounding, but very tight Euclidean distance approximation and show how they can support fast exact searchin& and even faster approximate searching on the same index structure. We theoretically and empirically compare APCA to all the other techniques and demonstrate its' superiority.
Continuous Queries over Data Streams
, 2001
"... In many recent applications, data may take the form of continuous data streams, rather than finite stored data sets. Several aspects of data management need to be reconsidered in the presence of data streams, offering a new research direction for the database community. In this paper we focus prim ..."
Abstract

Cited by 311 (10 self)
 Add to MetaCart
In many recent applications, data may take the form of continuous data streams, rather than finite stored data sets. Several aspects of data management need to be reconsidered in the presence of data streams, offering a new research direction for the database community. In this paper we focus primarily on the problem of query processing, specifically on how to define and evaluate continuous queries over data streams. We address semantic issues as well as efficiency concerns. Our main contributions are threefold. First, we specify a general and flexible architecture for query processing in the presence of data streams. Second, we use our basic architecture as a tool to clarify alternative semantics and processing techniques for continuous queries. The architecture also captures most previous work on continuous queries and data streams, as
Efficient time series matching by wavelets
 Proc. of 15th Int'l Conf. on Data Engineering
, 1999
"... Time series stored as feature vectors can be indexed by multidimensional index trees like RTrees for fast retrieval. Due to the dimensionality curse problem, transformations are applied to time series to reduce the number of dimensions of the feature vectors. Different transformations like Discrete ..."
Abstract

Cited by 280 (1 self)
 Add to MetaCart
(Show Context)
Time series stored as feature vectors can be indexed by multidimensional index trees like RTrees for fast retrieval. Due to the dimensionality curse problem, transformations are applied to time series to reduce the number of dimensions of the feature vectors. Different transformations like Discrete Fourier Transform (DFT), Discrete Wavelet Transform (DWT), KarhunenLoeve (KL) transform or Singular Value Decomposition (SVD) can be applied. While the use of DFT and KL transform or SVD have been studied in the literature, to our knowledge, there is no indepth study on the application of DWT. In this paper, we propose to use Haar Wavelet Transform for time series indexing. The major contributions are: (1) we show that Euclidean distance is preserved in the Haar transformed domain and no false dismissal will occur, (2) we show that Haar transform can outperform DFT through experiments, (3) a new similarity model is suggested to accommodate vertical shift of time series, and (4) a twophase method is proposed for efficientnearest neighbor query in time series databases. 1.
Geometric Range Searching and Its Relatives
 CONTEMPORARY MATHEMATICS
"... ... process a set S of points in so that the points of S lying inside a query R region can be reported or counted quickly. Wesurvey the known techniques and data structures for range searching and describe their application to other related searching problems. ..."
Abstract

Cited by 273 (41 self)
 Add to MetaCart
... process a set S of points in so that the points of S lying inside a query R region can be reported or counted quickly. Wesurvey the known techniques and data structures for range searching and describe their application to other related searching problems.