Results 1  10
of
52
Selfish Routing and the Price of Anarchy
 MATHEMATICAL PROGRAMMING SOCIETY NEWSLETTER
, 2007
"... Selfish routing is a classical mathematical model of how selfinterested users might route traffic through a congested network. The outcome of selfish routing is generally inefficient, in that it fails to optimize natural objective functions. The price of anarchy is a quantitative measure of this in ..."
Abstract

Cited by 252 (11 self)
 Add to MetaCart
Selfish routing is a classical mathematical model of how selfinterested users might route traffic through a congested network. The outcome of selfish routing is generally inefficient, in that it fails to optimize natural objective functions. The price of anarchy is a quantitative measure of this inefficiency. We survey recent work that analyzes the price of anarchy of selfish routing. We also describe related results on bounding the worstpossible severity of a phenomenon called Braess’s Paradox, and on three techniques for reducing the price of anarchy of selfish routing. This survey concentrates on the contributions of the author’s PhD thesis, but also discusses several more recent results in the area.
How Much Can Taxes Help Selfish Routing?
 EC'03
, 2003
"... ... in networks. We consider a model of selfish routing in which the latency experienced by network tra#c on an edge of the network is a function of the edge congestion, and network users are assumed to selfishly route tra#c on minimumlatency paths. The quality of a routing of tra#c is historically ..."
Abstract

Cited by 77 (5 self)
 Add to MetaCart
(Show Context)
... in networks. We consider a model of selfish routing in which the latency experienced by network tra#c on an edge of the network is a function of the edge congestion, and network users are assumed to selfishly route tra#c on minimumlatency paths. The quality of a routing of tra#c is historically measured by the sum of all travel times, also called the total latency. It is well known
Tolls for heterogeneous selfish users in multicommodity networks and generalized congestion games
"... ..."
Coordination mechanisms
 PROCEEDINGS OF THE 31ST INTERNATIONAL COLLOQUIUM ON AUTOMATA, LANGUAGES AND PROGRAMMING, IN: LECTURE NOTES IN COMPUTER SCIENCE
, 2004
"... We introduce the notion of coordination mechanisms to improve the performance in systems with independent selfish and noncolluding agents. The quality of a coordination mechanism is measured by its price of anarchy—the worstcase performance of a Nash equilibrium over the (centrally controlled) soc ..."
Abstract

Cited by 57 (6 self)
 Add to MetaCart
(Show Context)
We introduce the notion of coordination mechanisms to improve the performance in systems with independent selfish and noncolluding agents. The quality of a coordination mechanism is measured by its price of anarchy—the worstcase performance of a Nash equilibrium over the (centrally controlled) social optimum. We give upper and lower bounds for the price of anarchy for selfish task allocation and congestion games.
A network pricing game for selfish traffic
 in Proc. of SIGACTSIGOPS Symposium on Principles of Distributed Computing (PODC
, 2005
"... The success of the Internet is remarkable in light of the decentralized manner in which it is designed and operated. Unlike small scale networks, the Internet is built and controlled by a large number of disperate service providers who are not interested in any global optimization. Instead, provider ..."
Abstract

Cited by 52 (1 self)
 Add to MetaCart
The success of the Internet is remarkable in light of the decentralized manner in which it is designed and operated. Unlike small scale networks, the Internet is built and controlled by a large number of disperate service providers who are not interested in any global optimization. Instead, providers simply seek to maximize their own profit by charging users for access to their service. Users themselves also behave selfishly, optimizing over price and quality of service. Game theory provides a natural framework for the study of such a situation. However, recent work in this area tends to focus on either the service providers or the network users, but not both. This paper introduces a new model for exploring the interaction of these two elements, in which network managers compete for users via prices and the quality of service provided. We study the extent to which competition between service providers hurts the overall social utility of the system.
The Effectiveness of Stackelberg Strategies and Tolls for Network Congestion Games
 In Proc. Symposium on Discrete Algorithms (SODA
, 2007
"... Abstract It is well known that in a network with arbitrary(convex) latency functions that are a function of edge ..."
Abstract

Cited by 38 (1 self)
 Add to MetaCart
(Show Context)
Abstract It is well known that in a network with arbitrary(convex) latency functions that are a function of edge
Designing networks with good equilibria
 In SODA ’08
, 2007
"... In a network with selfish users, designing and deploying a protocol determines the rules of the game by which end users interact with each other and with the network. We study the problem of designing a protocol to optimize the equilibrium behavior of the induced network game. We consider network co ..."
Abstract

Cited by 36 (4 self)
 Add to MetaCart
(Show Context)
In a network with selfish users, designing and deploying a protocol determines the rules of the game by which end users interact with each other and with the network. We study the problem of designing a protocol to optimize the equilibrium behavior of the induced network game. We consider network costsharing games, where the set of Nash equilibria depends fundamentally on the choice of an edge costsharing protocol. Previous research focused on the Shapley protocol, in which the cost of each edge is shared equally among its users. We systematically study the design of optimal costsharing protocols for undirected and directed graphs, singlesink and multicommodity networks, different classes of costsharing methods, and different measures of the inefficiency of equilibria. One of our main technical tools is a complete characterization of the uniform costsharing protocols—protocols that are designed without foreknowledge of or assumptions on the network in which they will be deployed. We use this characterization result to identify the optimal uniform protocol in several scenarios: for example, the Shapley protocol is optimal in directed graphs, while the optimal protocol in undirected graphs, a simple priority scheme, has exponentially smaller worstcase price of anarchy than the Shapley protocol. We also provide several matching upper and lower bounds on the bestpossible performance of nonuniform costsharing protocols.
Altruism, selfishness, and spite in traffic routing
 In Proc. 9th Conf. Electronic Commerce (EC
, 2008
"... In this paper, we study the price of anarchy of traffic routing, under the assumption that users are partially altruistic or spiteful. We model such behavior by positing that the “cost ” perceived by a user is a linear combination of the actual latency of the route chosen (selfish component), and th ..."
Abstract

Cited by 24 (4 self)
 Add to MetaCart
(Show Context)
In this paper, we study the price of anarchy of traffic routing, under the assumption that users are partially altruistic or spiteful. We model such behavior by positing that the “cost ” perceived by a user is a linear combination of the actual latency of the route chosen (selfish component), and the increase in latency the user causes for others (altruistic component). We show that if all users have a coefficient of at least β> 0 for the altruistic component, then the price of anarchy is bounded by 1/β, for all network topologies, arbitrary commodities, and arbitrary semiconvex latency functions. We extend this result to give more precise bounds on the price of anarchy for specific classes of latency functions, even for β < 0 modeling spiteful behavior. In particular, we show that if all latency functions are linear, the price of anarchy is bounded by 4/(3 + 2β − β 2). We next study nonuniform altruism distributions, where different users may have different coefficients β. We prove that all such games, even with infinitely many types of players, have a Nash Equilibrium. We show that if the average of the coefficients for the altruistic components of all users is ¯ β, then the price of anarchy is bounded by 1 / ¯ β, for single commodity parallel link networks, and arbitrary convex latency functions. In particular, this result generalizes, albeit nonconstructively, the Stackelberg routing results of Roughgarden and of Swamy. More generally, we bound the price of anarchy based on the class of allowable latency functions, and as a corollary obtain tighter bounds for Stackelberg routing than a recent result of Swamy.
Efficient coordination mechanisms for unrelated machine scheduling
 In: Proc. AMCSIAM SODA
, 2009
"... We present three new coordination mechanisms for scheduling n selfish jobs on m unrelated machines. A coordination mechanism aims to mitigate the impact of selfishness of jobs on the efficiency of schedules by defining a local scheduling policy on each machine. The scheduling policies induce a game ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
(Show Context)
We present three new coordination mechanisms for scheduling n selfish jobs on m unrelated machines. A coordination mechanism aims to mitigate the impact of selfishness of jobs on the efficiency of schedules by defining a local scheduling policy on each machine. The scheduling policies induce a game among the jobs and each job prefers to be scheduled on a machine so that its completion time is minimum given the assignments of the other jobs. We consider the maximum completion time among all jobs as the measure of the efficiency of schedules. The approximation ratio of a coordination mechanism quantifies the efficiency of pure Nash equilibria (price of anarchy) of the induced game. Our mechanisms are deterministic, local, and preemptive in the sense that the scheduling policy does not necessarily process
Design of price mechanisms for network resource allocation via price of anarchy. Mimeo
, 2005
"... We study the design of price mechanisms for communication network problems in which a user’s utility depends on the amount of flow she sends through the network, and the congestion on each link depends on the total traffic flows over it. The price mechanisms are characterized by a set of axioms that ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
We study the design of price mechanisms for communication network problems in which a user’s utility depends on the amount of flow she sends through the network, and the congestion on each link depends on the total traffic flows over it. The price mechanisms are characterized by a set of axioms that have been adopted in the costsharing games, and we search for the price mechanisms that provide the minimum price of anarchy. We show that, given the nondecreasing and concave utilities of users and the convex quadratic congestion costs in each link, if the price mechanism cannot depend on utility functions, the best achievable price of anarchy is 4(3 − 2 √ 2) ≈ 31.4%. Thus, the popular marginal cost pricing with price of anarchy less than 1/3 ≈ 33.3 % is nearly optimal. We also investigate the scenario in which the price mechanisms can be made contingent on the users ’ preference profile while such information is available. Mathematics Subject Classification (MSC): 90B18 1