Results 1  10
of
516
WebGestalt: an integrated system for exploring gene sets in various biological contexts
, 2005
"... ..."
(Show Context)
Selecting the Right Interestingness Measure for Association Patterns
, 2002
"... Many techniques for association rule mining and feature selection require a suitable metric to capture the dependencies among variables in a data set. For example, metrics such as support, confidence, lift, correlation, and collective strength are often used to determine the interestinghess of assoc ..."
Abstract

Cited by 254 (10 self)
 Add to MetaCart
(Show Context)
Many techniques for association rule mining and feature selection require a suitable metric to capture the dependencies among variables in a data set. For example, metrics such as support, confidence, lift, correlation, and collective strength are often used to determine the interestinghess of association patterns. However, many such measures provide conflicting information about the interestinghess of a pattern, and the best metric to use for a given application domain is rarely known. In this paper, we present an overview of various measures proposed in the statistics, machine learning and data mining literature. We describe several key properties one should examine in order to select the right measure for a given application domain. A comparative study of these properties is made using twenty one of the existing measures. We show that each measure has different properties which make them useful for some application domains, but not for others. We also present two scenarios in which most of the existing measures agree with each other, namely, supportbased pruning and table standardization. Finally, we present an algorithm to select a small set of tables such that an expert can select a desirable measure by looking at just this small set of tables.
Incorporating Contextual Information in Recommender Systems Using a Multidimensional Approach
 ACM Transactions on Information Systems
, 2005
"... The paper presents a multidimensional (MD) approach to recommender systems that can provide recommendations based on additional contextual information besides the typical information on users and items used in most of the current recommender systems. This approach supports multiple dimensions, exten ..."
Abstract

Cited by 236 (9 self)
 Add to MetaCart
The paper presents a multidimensional (MD) approach to recommender systems that can provide recommendations based on additional contextual information besides the typical information on users and items used in most of the current recommender systems. This approach supports multiple dimensions, extensive profiling, and hierarchical aggregation of recommendations. The paper also presents a multidimensional rating estimation method capable of selecting twodimensional segments of ratings pertinent to the recommendation context and applying standard collaborative filtering or other traditional twodimensional rating estimation techniques to these segments. A comparison of the multidimensional and twodimensional rating estimation approaches is made, and the tradeoffs between the two are studied. Moreover, the paper introduces a combined rating estimation method that identifies the situations where the MD approach outperforms the standard twodimensional approach and uses the MD approach in those situations and the standard twodimensional approach elsewhere. Finally, the paper presents a pilot empirical study of the combined approach, using a multidimensional movie recommender system that was developed for implementing this approach and testing its performance. 1 1.
Clausal Discovery
, 1997
"... The clausal discovery engine Claudien is presented. Claudien is an inductive logic programming engine that fits in the descriptive data mining paradigm. Claudien addresses characteristic induction from interpretations, a task which is related to existing formalisations of induction in logic. In ch ..."
Abstract

Cited by 199 (34 self)
 Add to MetaCart
The clausal discovery engine Claudien is presented. Claudien is an inductive logic programming engine that fits in the descriptive data mining paradigm. Claudien addresses characteristic induction from interpretations, a task which is related to existing formalisations of induction in logic. In characteristic induction from interpretations, the regularities are represented by clausal theories, and the data using Herbrand interpretations. Because Claudien uses clausal logic to represent hypotheses, the regularities induced typically involve multiple relations or predicates. Claudien also employs a novel declarative bias mechanism to define the set of clauses that may appear in a hypothesis.
Approximate Join Processing Over Data Streams
, 2003
"... We consider the problem of approximating sliding window joins over data streams in a data stream processing system with limited resources. In our model, we deal with resource constraints by shedding load in the form of dropping tuples from the data streams. We first discuss alternate architectural m ..."
Abstract

Cited by 122 (3 self)
 Add to MetaCart
We consider the problem of approximating sliding window joins over data streams in a data stream processing system with limited resources. In our model, we deal with resource constraints by shedding load in the form of dropping tuples from the data streams. We first discuss alternate architectural models for data stream join processing, and we survey suitable measures for the quality of an approximation of a setvalued query result. We then consider the number of generated result tuples as the quality measure, and we give optimal offline and fast online algorithms for it. In a thorough experimental study with synthetic and real data we show the efficacy of our solutions. For applications with demand for exact results we introduce a new Archivemetric which captures the amount of work needed to complete the join in case the streams are archived for later processing.
Mining Data Streams: A Review.
 SIGMOD Record,
, 2005
"... Abstract The recent advances in hardware and software have enabled the capture of different measurements of data in a wide range of fields. These measurements are generated continuously and in a very high fluctuating data rates. Examples include sensor networks, web logs, and computer network traff ..."
Abstract

Cited by 113 (6 self)
 Add to MetaCart
(Show Context)
Abstract The recent advances in hardware and software have enabled the capture of different measurements of data in a wide range of fields. These measurements are generated continuously and in a very high fluctuating data rates. Examples include sensor networks, web logs, and computer network traffic. The storage, querying and mining of such data sets are highly computationally challenging tasks. Mining data streams is concerned with extracting knowledge structures represented in models and patterns in non stopping streams of information. The research in data stream mining has gained a high attraction due to the importance of its applications and the increasing generation of streaming information. Applications of data stream analysis can vary from critical scientific and astronomical applications to important business and financial ones. Algorithms, systems and frameworks that address streaming challenges have been developed over the past three years. In this review paper, we present the stateoftheart in this growing vital field. 1Introduction The intelligent data analysis has passed through a number of stages. Each stage addresses novel research issues that have arisen. Statistical exploratory data analysis represents the first stage. The goal was to explore the available data in order to test a specific hypothesis. With the advances in computing power, machine learning field has arisen. The objective was to find computationally efficient solutions to data analysis problems. Along with the progress in machine learning research, new data analysis problems have been addressed. Due to the increase in database sizes, new algorithms have been proposed to deal with the scalability issue. Moreover machine learning and statistical analysis techniques have been adopted and modified in order to address the problem of very large databases. Data mining is that interdisciplinary field of study that can extract models and patterns from large amounts of information stored in data repositories Recently, the data generation rates in some data sources become faster than ever before. This rapid generation of continuous streams of information has challenged our storage, computation and communication capabilities in computing systems. Systems, models and techniques have been proposed and developed over the past few years to address these challenges In this paper, we review the theoretical foundations of data stream analysis. Mining data stream systems, techniques are critically reviewed. Finally, we outline and discuss research problems in streaming mining field of study. These research issues should be addressed in order to realize robust systems that are capable of fulfilling the needs of data stream mining applications. The paper is organized as follows. Section 2 presents the theoretical background of data stream analysis. Mining data stream techniques and systems are reviewed in sections 3 and 4 respectively. Open and addressed research issues in this growing field are discussed in section 5. Finally section 6 summarizes this review paper. 2Theoretical Foundations Research problems and challenges that have been arisen in mining data streams have its solutions using wellestablished statistical and computational approaches. We can categorize these solutions to databased and taskbased ones. In databased solutions, the idea is to examine only a subset of the whole dataset or to transform the data vertically or horizontally to an approximate smaller size data representation. At the other hand, in taskbased solutions, techniques from computational theory have been adopted to achieve time
Clustering aggregation
 in ICDE 2005, 2005
"... We consider the following problem: given a set of clusterings, find a clustering that agrees as much as possible with the given clusterings. This problem, clustering aggregation, appears naturally in various contexts. For example, clustering categorical data is an instance of the problem: each cat ..."
Abstract

Cited by 109 (1 self)
 Add to MetaCart
(Show Context)
We consider the following problem: given a set of clusterings, find a clustering that agrees as much as possible with the given clusterings. This problem, clustering aggregation, appears naturally in various contexts. For example, clustering categorical data is an instance of the problem: each categorical variable can be viewed as a clustering of the input rows. Moreover, clustering aggregation can be used as a metaclustering method to improve the robustness of clusterings. The problem formulation does not require apriori information about the number of clusters, and it gives a natural way for handling missing values. We give a formal statement of the clusteringaggregation problem, we discuss related work, and we suggest a number of algorithms. For several of the methods we provide theoretical guarantees on the quality of the solutions. We also show how sampling can be used to scale the algorithms for large data sets. We give an extensive empirical evaluation demonstrating the usefulness of the problem and of the solutions. 1
Selecting the right objective measure for association analysis
 Information Systems
"... Abstract. Objective measures such as support, confidence, interest factor, correlation, and entropy are often used to evaluate the interestingness of association patterns. However, in many situations, these measures may provide conflicting information about the interestingness of a pattern. Data min ..."
Abstract

Cited by 97 (6 self)
 Add to MetaCart
(Show Context)
Abstract. Objective measures such as support, confidence, interest factor, correlation, and entropy are often used to evaluate the interestingness of association patterns. However, in many situations, these measures may provide conflicting information about the interestingness of a pattern. Data mining practitioners also tend to apply an objective measure without realizing that there may be better alternatives available for their application. In this paper, we describe several key properties one should examine in order to select the right measure for a given application. A comparative study of these properties is made using twentyone measures that were originally developed in diverse fields such as statistics, social science, machine learning, and data mining. We show that depending on its properties, each measure is useful for some application, but not for others. We also demonstrate two scenarios in which many existing measures become consistent with each other, namely, when supportbased pruning and a technique known as table standardization are applied. Finally, we present an algorithm for selecting a small set of patterns such that domain experts can find a measure that best fits their requirements by ranking this small set of patterns. 1
Learning to detect and classify malicious executables in the wild
 Journal of Machine Learning Research
, 2006
"... We describe the use of machine learning and data mining to detect and classify malicious executables as they appear in the wild. We gathered 1,971 benign and 1,651 malicious executables and encoded each as a training example using ngrams of byte codes as features. Such processing resulted in more t ..."
Abstract

Cited by 90 (1 self)
 Add to MetaCart
(Show Context)
We describe the use of machine learning and data mining to detect and classify malicious executables as they appear in the wild. We gathered 1,971 benign and 1,651 malicious executables and encoded each as a training example using ngrams of byte codes as features. Such processing resulted in more than 255 million distinct ngrams. After selecting the most relevant ngrams for prediction, we evaluated a variety of inductive methods, including naive Bayes, decision trees, support vector machines, and boosting. Ultimately, boosted decision trees outperformed other methods with an area under the ROC curve of 0.996. Results suggest that our methodology will scale to larger collections of executables. We also evaluated how well the methods classified executables based on the function of their payload, such as opening a backdoor and massmailing. Areas under the ROC curve for detecting payload function were in the neighborhood of 0.9, which were smaller than those for the detection task. However, we attribute this drop in performance to fewer training examples and to the challenge of obtaining properly labeled examples, rather than to a failing of the methodology or to some inherent difficulty of the classification task. Finally, we applied detectors to 291 malicious executables discovered after we gathered our original collection, and boosted decision trees achieved a truepositive rate of 0.98 for a desired falsepositive rate of 0.05. This result is particularly important, for it suggests that our methodology could be used as the basis for an operational system for detecting previously undiscovered malicious executables.
Efficient mining of frequent and distinctive feature configurations
 In ICCV’07
, 2007
"... We present a novel approach to automatically find spatial configurations of local features occurring frequently on instances of a given object class, and rarely on the background. The approach is based on computationally efficient data mining techniques and can find frequent configurations among ten ..."
Abstract

Cited by 88 (1 self)
 Add to MetaCart
(Show Context)
We present a novel approach to automatically find spatial configurations of local features occurring frequently on instances of a given object class, and rarely on the background. The approach is based on computationally efficient data mining techniques and can find frequent configurations among tens of thousands of candidates within seconds. Based on the mined configurations we develop a method to select features which have high probability of lying on previously unseen instances of the object class. The technique is meant as an intermediate processing layer to filter the large amount of clutter features returned by lowlevel feature extraction, and hence to facilitate the tasks of higherlevel processing stages such as object detection. 1.