Results 1  10
of
58
Flexible smoothing with Bsplines and penalties
 STATISTICAL SCIENCE
, 1996
"... Bsplines are attractive for nonparametric modelling, but choosing the optimal number and positions of knots is a complex task. Equidistant knots can be used, but their small and discrete number allows only limited control over smoothness and fit. We propose to use a relatively large number of knots ..."
Abstract

Cited by 395 (6 self)
 Add to MetaCart
Bsplines are attractive for nonparametric modelling, but choosing the optimal number and positions of knots is a complex task. Equidistant knots can be used, but their small and discrete number allows only limited control over smoothness and fit. We propose to use a relatively large number of knots and a difference penalty on coefficients of adjacent Bsplines. We show connections to the familiar spline penalty on the integral of the squared second derivative. A short overview of Bsplines, their construction, and penalized likelihood is presented. We discuss properties of penalized Bsplines and propose various criteria for the choice of an optimal penalty parameter. Nonparametric logistic regression, density estimation and scatterplot smoothing are used as examples. Some details of the computations are presented.
Bayesian PSplines
 Journal of Computational and Graphical Statistics
, 2004
"... Psplines are an attractive approach for modelling nonlinear smooth effects of covariates within the generalized additive and varying coefficient models framework. In this paper we propose a Bayesian version for Psplines and generalize the approach for one dimensional curves to two dimensional surf ..."
Abstract

Cited by 121 (26 self)
 Add to MetaCart
Psplines are an attractive approach for modelling nonlinear smooth effects of covariates within the generalized additive and varying coefficient models framework. In this paper we propose a Bayesian version for Psplines and generalize the approach for one dimensional curves to two dimensional surface fitting for modelling interactions between metrical covariates. A Bayesian approach to Psplines has the advantage of allowing for simultaneous estimation of smooth functions and smoothing parameters. Moreover, it can easily be extended to more complex formulations, for example to mixed models with random effects for serially or spatially correlated response. Additionally, the assumption of constant smoothing parameters can be replaced by allowing the smoothing parameters to be locally adaptive. This is particularly useful in situations with changing curvature of the underlying smooth function or where the function is highly oscillating. Inference is fully Bayesian and uses recent MCMC techniques for drawing random samples from the posterior. In a couple of simulation studies the performance of Bayesian Psplines is studied and compared to other approaches in the literature. We illustrate the approach by a complex application on rents for flats in Munich.
Selecting the Number of Knots For Penalized Splines
, 2000
"... Penalized splines, or Psplines, are regression splines fit by leastsquares with a roughness penaly. Psplines have much in common with smoothing splines, but the type of penalty used with a Pspline is somewhat more general than for a smoothing spline. Also, the number and location of the knots ..."
Abstract

Cited by 101 (10 self)
 Add to MetaCart
Penalized splines, or Psplines, are regression splines fit by leastsquares with a roughness penaly. Psplines have much in common with smoothing splines, but the type of penalty used with a Pspline is somewhat more general than for a smoothing spline. Also, the number and location of the knots of a Pspline is not fixed as with a smoothing spline. Generally, the knots of a Pspline are at fixed quantiles of the independent variable and the only tuning parameter to choose is the number of knots. In this article, the effects of the number of knots on the performance of Psplines are studied. Two algorithms are proposed for the automatic selection of the number of knots. The myoptic algorithm stops when no improvement in the generalized cross validation statistic (GCV) is noticed with the last increase in the number of knots. The full search examines all candidates in a fixed sequence of possible numbers of knots and chooses the candidate that minimizes GCV. The myoptic algo...
Geoadditive Models
, 2000
"... this paper is a recent article on modelbased geostatistics by Diggle, Tawn and Moyeed (1998) where pure kriging (i.e. no covariates) is the focus. Our paper inherits some of its aspects: modelbased and with mixed model connections. In particular the comment by Bowman (1998) in the ensuing discussi ..."
Abstract

Cited by 79 (4 self)
 Add to MetaCart
this paper is a recent article on modelbased geostatistics by Diggle, Tawn and Moyeed (1998) where pure kriging (i.e. no covariates) is the focus. Our paper inherits some of its aspects: modelbased and with mixed model connections. In particular the comment by Bowman (1998) in the ensuing discussion suggested that additive modelling would be a worthwhile extension. This paper essentially follows this suggestion. However, this paper is not the first to combine the notions of geostatistics and additive modelling. References known to us are Kelsall and Diggle (1998), Durban Reguera (1998) and Durban, Hackett, Currie and Newton (2000). Nevertheless, we believe that our approach has a number of attractive features (see (1)(4) above), not all shared by these references. Section 2 describes the motivating application and data in detail. Section 3 shows how one can express additive models as a mixed model, while Section 4 does the same for kriging and merges the two into the geoadditive model. Issues concerning the amount of smoothing are discussed in Section 5 and inferential aspects are treated in Section 6. Our analysis of the Upper Cape Cod reproductive data is presented in Section 7. Section 8 discusses extension to the generalised context.We close the paper with some disussion in Section 9. 2 Description of the application and data
Spatiallyadaptive penalties for spline fitting
 Australian and New Zealand Journal of Statistics
, 2000
"... We study spline fitting with a roughness penalty that adapts to spatial heterogeneity in the regression function. Our estimates are pth degree piecewise polynomials with p − 1 continuous derivatives. A large and fixed number of knots is used and smoothing is achieved by putting a quadratic penalty ..."
Abstract

Cited by 52 (7 self)
 Add to MetaCart
We study spline fitting with a roughness penalty that adapts to spatial heterogeneity in the regression function. Our estimates are pth degree piecewise polynomials with p − 1 continuous derivatives. A large and fixed number of knots is used and smoothing is achieved by putting a quadratic penalty on the jumps of the pth derivative at the knots. To be spatially adaptive, the logarithm of the penalty is itself a linear spline but with relatively few knots and with values at the knots chosen to minimize GCV. This locallyadaptive spline estimator is compared with other spline estimators in the literature such as cubic smoothing splines and knotselection techniques for leastsquares regression. Our estimator can be interpreted as an empirical Bayes estimate for a prior allowing spatial heterogeneity. In cases of spatially heterogeneous regression functions,
Penalized structured additive regression for spacetime data: a Bayesian perspective
 Statistica Sinica
, 2004
"... We propose extensions of penalized spline generalized additive models for analysing spacetime regression data and study them from a Bayesian perspective. Nonlinear effects of continuous covariates and time trends are modelled through Bayesian versions of penalized splines, while correlated spatia ..."
Abstract

Cited by 46 (21 self)
 Add to MetaCart
We propose extensions of penalized spline generalized additive models for analysing spacetime regression data and study them from a Bayesian perspective. Nonlinear effects of continuous covariates and time trends are modelled through Bayesian versions of penalized splines, while correlated spatial effects follow a Markov random field prior. This allows to treat all functions and effects within a unified general framework by assigning appropriate priors with different forms and degrees of smoothness. Inference can be performed either with full (FB) or empirical Bayes (EB) posterior analysis. FB inference using MCMC techniques is a slight extension of own previous work. For EB inference, a computationally efficient solution is developed on the basis of a generalized linear mixed model representation. The second approach can be viewed as posterior mode estimation and is closely related to penalized likelihood estimation in a frequentist setting. Variance components, corresponding to smoothing parameters, are then estimated by using marginal likelihood. We carefully compare both inferential procedures in simulation studies and illustrate them through real data applications. The methodology is available in the open domain statistical package BayesX and as an Splus/R function.
Lang S: Generalized structured additive regression based on Bayesian P splines
 Computational Statistics & Data Analysis
"... Generalized additive models (GAM) for modelling nonlinear effects of continuous covariates are now well established tools for the applied statistician. In this paper we develop Bayesian GAM’s and extensions to generalized structured additive regression based on one or two dimensional Psplines as th ..."
Abstract

Cited by 44 (9 self)
 Add to MetaCart
(Show Context)
Generalized additive models (GAM) for modelling nonlinear effects of continuous covariates are now well established tools for the applied statistician. In this paper we develop Bayesian GAM’s and extensions to generalized structured additive regression based on one or two dimensional Psplines as the main building block. The approach extends previous work by Lang and Brezger (2003) for Gaussian responses. Inference relies on Markov chain Monte Carlo (MCMC) simulation techniques, and is either based on iteratively weighted least squares (IWLS) proposals or on latent utility representations of (multi)categorical regression models. Our approach covers the most common univariate response distributions, e.g. the Binomial, Poisson or Gamma distribution, as well as multicategorical responses. As we will demonstrate through two applications on the forest health status of trees and a spacetime analysis of health insurance data, the approach allows realistic modelling of complex problems. We consider the enormous flexibility and extendability of our approach as a main advantage of Bayesian inference based on MCMC techniques compared to more traditional approaches. Software for the methodology presented in the paper is provided within the public domain package BayesX. Key words: geoadditive models, IWLS proposals, multicategorical response, structured additive
Model choice in time series studies of air pollution and mortality
, 2004
"... Summary. Multicity time series studies of particulate matter and mortality and morbidity have provided evidence that daily variation in air pollution levels is associated with daily variation in mortality counts.These findings served as key epidemiological evidence for the recent review of the US na ..."
Abstract

Cited by 30 (7 self)
 Add to MetaCart
(Show Context)
Summary. Multicity time series studies of particulate matter and mortality and morbidity have provided evidence that daily variation in air pollution levels is associated with daily variation in mortality counts.These findings served as key epidemiological evidence for the recent review of the US national ambient air quality standards for particulate matter. As a result, methodological issues concerning time series analysis of the relationship between air pollution and health have attracted the attention of the scientific community and critics have raised concerns about the adequacy of current model formulations. Time series data on pollution and mortality are generally analysed by using loglinear, Poisson regression models for overdispersed counts with the daily number of deaths as outcome, the (possibly lagged) daily level of pollution as a linear predictor and smooth functions of weather variables and calendar time used to adjust for timevarying confounders. Investigators around the world have used different approaches to adjust for confounding, making it difficult to compare results across studies. To date, the statistical properties of these different approaches have not been comprehensively compared.To address these issues, we quantify and characterize model uncertainty and model choice in adjusting for seasonal and longterm trends in time series models of air pollution and mortality. First, we
Splines, Knots, and Penalties
, 2004
"... Penalized splines have gained much popularity as a flexible tool for smoothing and semiparametric models. Two approaches have been advocated: 1) use a Bspline basis, equallyspaced knots and difference penalties (Eilers and Marx, 1996) and 2) use truncated power functions, knots based on quantiles ..."
Abstract

Cited by 29 (0 self)
 Add to MetaCart
(Show Context)
Penalized splines have gained much popularity as a flexible tool for smoothing and semiparametric models. Two approaches have been advocated: 1) use a Bspline basis, equallyspaced knots and difference penalties (Eilers and Marx, 1996) and 2) use truncated power functions, knots based on quantiles of the independent variable and a ridge penalty (Ruppert, Wand and Carroll, 2003). We compare the two approaches on many aspects: numerical stability, quality of the fit, interpolation/extrapolation, derivative estimation, visual presentation and extension to multidimensional smoothing. We discuss mixed model and Bayesian parallels to penalized regression. We conclude that Bsplines with difference penalties are clearly to be preferred. Keywords: Psplines, truncated power functions, interpolation, smoothing. 1 1
Exact likelihood ratio tests for penalised splines
 Biometrika
, 2005
"... Penalised–spline–based additive models allow a simple mixed model representation where the variance components control departures from linear models. The smoothing parameter is the ratio between the randomcoefficient and error variances and tests for linear regression reduce to tests for zero rando ..."
Abstract

Cited by 19 (5 self)
 Add to MetaCart
Penalised–spline–based additive models allow a simple mixed model representation where the variance components control departures from linear models. The smoothing parameter is the ratio between the randomcoefficient and error variances and tests for linear regression reduce to tests for zero randomcoefficient variances. We propose exact likelihood and restricted likelihood ratio tests for testing polynomial regression versus a general alternative modelled by penalised splines. Their spectral decompositions are used as the basis of fast simulation algorithms. We derive the asymptotic local power properties of the tests under weak conditions. In particular we characterise the local alternatives that are detected with asymptotic probability one. Confidence intervals for the smoothing parameter are obtained by inverting the tests for a fixed smoothing parameter versus a general alternative. We discuss F and R tests and show that ignoring the variability in the smoothing parameter estimator can have a dramatic effect on their null distributions. The powers of several known tests are investigated and a small set of tests with good power properties is identified. The restricted likelihood ratio test is among the best in terms of power.