Results 1 - 10
of
494
Yago: A Core of Semantic Knowledge
- IN PROC. OF WWW ’07
, 2007
"... We present YAGO, a light-weight and extensible ontology with high coverage and quality. YAGO builds on entities and relations and currently contains roughly 900,000 entities and 5,000,000 facts. This includes the Is-A hierarchy as well as non-taxonomic relations between entities (such as hasWonPrize ..."
Abstract
-
Cited by 504 (66 self)
- Add to MetaCart
We present YAGO, a light-weight and extensible ontology with high coverage and quality. YAGO builds on entities and relations and currently contains roughly 900,000 entities and 5,000,000 facts. This includes the Is-A hierarchy as well as non-taxonomic relations between entities (such as hasWonPrize). The facts have been automatically extracted from the unification of Wikipedia and WordNet, using a carefully designed combination of rule-based and heuristic methods described in this paper. The resulting knowledge base is a major step beyond WordNet: in quality by adding knowledge about individuals like persons, organizations, products, etc. with their semantic relationships – and in quantity by increasing the number of facts by more than an order of magnitude. Our empirical evaluation of fact correctness shows an accuracy of about 95%. YAGO is based on a logically clean model, which is decidable, extensible, and compatible with RDFS. Finally, we show how YAGO can be further extended by state-of-the-art information
Open information extraction from the web
- IN IJCAI
, 2007
"... Traditionally, Information Extraction (IE) has focused on satisfying precise, narrow, pre-specified requests from small homogeneous corpora (e.g., extract the location and time of seminars from a set of announcements). Shifting to a new domain requires the user to name the target relations and to ma ..."
Abstract
-
Cited by 373 (39 self)
- Add to MetaCart
Traditionally, Information Extraction (IE) has focused on satisfying precise, narrow, pre-specified requests from small homogeneous corpora (e.g., extract the location and time of seminars from a set of announcements). Shifting to a new domain requires the user to name the target relations and to manually create new extraction rules or hand-tag new training examples. This manual labor scales linearly with the number of target relations. This paper introduces Open IE (OIE), a new extraction paradigm where the system makes a single data-driven pass over its corpus and extracts a large set of relational tuples without requiring any human input. The paper also introduces TEXTRUNNER, a fully implemented, highly scalable OIE system where the tuples are assigned a probability and indexed to support efficient extraction and exploration via user queries. We report on experiments over a 9,000,000 Web page corpus that compare TEXTRUNNER with KNOWITALL, a state-of-the-art Web IE system. TEXTRUNNER achieves an error reduction of 33% on a comparable set of extractions. Furthermore, in the amount of time it takes KNOWITALL to perform extraction for a handful of pre-specified relations, TEXTRUNNER extracts a far broader set of facts reflecting orders of magnitude more relations, discovered on the fly. We report statistics on TEXTRUNNER’s 11,000,000 highest probability tuples, and show that they contain over 1,000,000 concrete facts and over 6,500,000 more abstract assertions.
Unsupervised namedentity extraction from the web: An experimental study.
- Artificial Intelligence,
, 2005
"... Abstract The KNOWITALL system aims to automate the tedious process of extracting large collections of facts (e.g., names of scientists or politicians) from the Web in an unsupervised, domain-independent, and scalable manner. The paper presents an overview of KNOW-ITALL's novel architecture and ..."
Abstract
-
Cited by 372 (39 self)
- Add to MetaCart
(Show Context)
Abstract The KNOWITALL system aims to automate the tedious process of extracting large collections of facts (e.g., names of scientists or politicians) from the Web in an unsupervised, domain-independent, and scalable manner. The paper presents an overview of KNOW-ITALL's novel architecture and design principles, emphasizing its distinctive ability to extract information without any hand-labeled training examples. In its first major run, KNOW-ITALL extracted over 50,000 class instances, but suggested a challenge: How can we improve KNOWITALL's recall and extraction rate without sacrificing precision? This paper presents three distinct ways to address this challenge and evaluates their performance. Pattern Learning learns domain-specific extraction rules, which enable additional extractions. Subclass Extraction automatically identifies sub-classes in order to boost recall (e.g., "chemist" and "biologist" are identified as sub-classes of "scientist"). List Extraction locates lists of class instances, learns a "wrapper" for each list, and extracts elements of each list. Since each method bootstraps from KNOWITALL's domain-independent methods, the methods also obviate hand-labeled training examples. The paper reports on experiments, focused on building lists of named entities, that measure the relative efficacy of each method and demonstrate their synergy. In concert, our methods gave KNOWITALL a 4-fold to 8-fold increase in recall at precision of 0.90, and discovered over 10,000 cities missing from the Tipster Gazetteer.
Dependency tree kernels for relation extraction
- In Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04
, 2004
"... We extend previous work on tree kernels to estimate the similarity between the dependency trees of sentences. Using this kernel within a Support Vector Machine, we detect and classify relations between entities in the Automatic Content Extraction (ACE) corpus of news articles. We examine the utility ..."
Abstract
-
Cited by 263 (2 self)
- Add to MetaCart
We extend previous work on tree kernels to estimate the similarity between the dependency trees of sentences. Using this kernel within a Support Vector Machine, we detect and classify relations between entities in the Automatic Content Extraction (ACE) corpus of news articles. We examine the utility of different features such as Wordnet hypernyms, parts of speech, and entity types, and find that the dependency tree kernel achieves a 20 % F1 improvement over a “bag-of-words ” kernel. 1
Distant supervision for relation extraction without labeled data
"... Modern models of relation extraction for tasks like ACE are based on supervised learning of relations from small hand-labeled corpora. We investigate an alternative paradigm that does not require labeled corpora, avoiding the domain dependence of ACEstyle algorithms, and allowing the use of corpora ..."
Abstract
-
Cited by 239 (3 self)
- Add to MetaCart
(Show Context)
Modern models of relation extraction for tasks like ACE are based on supervised learning of relations from small hand-labeled corpora. We investigate an alternative paradigm that does not require labeled corpora, avoiding the domain dependence of ACEstyle algorithms, and allowing the use of corpora of any size. Our experiments use Freebase, a large semantic database of several thousand relations, to provide distant supervision. For each pair of entities that appears in some Freebase relation, we find all sentences containing those entities in a large unlabeled corpus and extract textual features to train a relation classifier. Our algorithm combines the advantages of supervised IE (combining 400,000 noisy pattern features in a probabilistic classifier) and unsupervised IE (extracting large numbers of relations from large corpora of any domain). Our model is able to extract 10,000 instances of 102 relations at a precision of 67.6%. We also analyze feature performance, showing that syntactic parse features are particularly helpful for relations that are ambiguous or lexically distant in their expression. 1
Context in Web Search
- IEEE Data Engineering Bulletin
"... Web search engines generally treat search requests in isolation. The results for a given query are identical, independent of the user, or the context in which the user made the request. Nextgeneration search engines will make increasing use of context information, either by using explicit or implici ..."
Abstract
-
Cited by 157 (0 self)
- Add to MetaCart
(Show Context)
Web search engines generally treat search requests in isolation. The results for a given query are identical, independent of the user, or the context in which the user made the request. Nextgeneration search engines will make increasing use of context information, either by using explicit or implicit context information from users, or by implementing additional functionality within restricted contexts. Greater use of context in web search may help increase competition and diversity on the web. 1
Web-scale information extraction in knowItAll: (preliminary results).
- In Proceedings of the 13th International Conference on World Wide Web (WWW ’04),
, 2004
"... ABSTRACT Manually querying search engines in order to accumulate a large body of factual information is a tedious, error-prone process of piecemeal search. Search engines retrieve and rank potentially relevant documents for human perusal, but do not extract facts, assess confidence, or fuse informa ..."
Abstract
-
Cited by 151 (5 self)
- Add to MetaCart
(Show Context)
ABSTRACT Manually querying search engines in order to accumulate a large body of factual information is a tedious, error-prone process of piecemeal search. Search engines retrieve and rank potentially relevant documents for human perusal, but do not extract facts, assess confidence, or fuse information from multiple documents. This paper introduces KNOWITALL, a system that aims to automate the tedious process of extracting large collections of facts from the web in an autonomous, domain-independent, and scalable manner. The paper describes preliminary experiments in which an instance of KNOWITALL, running for four days on a single machine, was able to automatically extract 54,753 facts. KNOWITALL associates a probability with each fact enabling it to trade off precision and recall. The paper analyzes KNOWITALL's architecture and reports on lessons learned for the design of large-scale information extraction systems.
YAGO: A Large Ontology from Wikipedia and WordNet
, 2008
"... This article presents YAGO, a large ontology with high coverage and precision. YAGO has been automatically derived from Wikipedia and WordNet. It comprises entities and relations, and currently contains more than 1.7 million entities and 15 million facts. These include the taxonomic Is-A hierarchy a ..."
Abstract
-
Cited by 148 (16 self)
- Add to MetaCart
This article presents YAGO, a large ontology with high coverage and precision. YAGO has been automatically derived from Wikipedia and WordNet. It comprises entities and relations, and currently contains more than 1.7 million entities and 15 million facts. These include the taxonomic Is-A hierarchy as well as semantic relations between entities. The facts for YAGO have been extracted from the category system and the infoboxes of Wikipedia and have been combined with taxonomic relations from WordNet. Type checking techniques help us keep YAGO’s precision at 95% – as proven by an extensive evaluation study. YAGO is based on a clean logical model with a decidable consistency. Furthermore, it allows representing n-ary relations in a natural way while maintaining compatibility with RDFS. A powerful query model facilitates access to YAGO’s data.
Coupled Semi-Supervised Learning for Information Extraction
"... We consider the problem of semi-supervised learning to extract categories (e.g., academic fields, athletes) and relations (e.g., PlaysSport(athlete, sport)) from web pages, starting with a handful of labeled training examples of each category or relation, plus hundreds of millions of unlabeled web d ..."
Abstract
-
Cited by 137 (6 self)
- Add to MetaCart
(Show Context)
We consider the problem of semi-supervised learning to extract categories (e.g., academic fields, athletes) and relations (e.g., PlaysSport(athlete, sport)) from web pages, starting with a handful of labeled training examples of each category or relation, plus hundreds of millions of unlabeled web documents. Semi-supervised training using only a few labeled examples is typically unreliable because the learning task is underconstrained. This paper pursues the thesis that much greater accuracy can be achieved by further constraining the learning task, by coupling the semi-supervised training of many extractors for different categories and relations. We characterize several ways in which the training of category and relation extractors can be coupled, and present experimental results demonstrating significantly improved accuracy as a result. Categories and Subject Descriptors I.2.6 [Artificial Intelligence]: Learning—knowledge acquisition;
YAGO: A Core of Semantic Knowledge Unifying WordNet and Wikipedia
, 2007
"... We present YAGO, a light-weight and extensible ontology with high coverage and quality. YAGO builds on entities and relations and currently contains more than 1 million entities and 5 million facts. This includes the Is-A hierarchy as well as non-taxonomic relations between entities (such as hasWo ..."
Abstract
-
Cited by 132 (16 self)
- Add to MetaCart
We present YAGO, a light-weight and extensible ontology with high coverage and quality. YAGO builds on entities and relations and currently contains more than 1 million entities and 5 million facts. This includes the Is-A hierarchy as well as non-taxonomic relations between entities (such as hasWonPrize). The facts have been automatically extracted from Wikipedia and unified with WordNet, using a carefully designed combination of rule-based and heuristic methods described in this paper. The resulting knowledge base is a major step beyond WordNet: in quality by adding knowledge about individuals like persons, organizations, products, etc. with their semantic relationships – and in quantity by increasing the number of facts by more than an order of magnitude. Our empirical evaluation of fact correctness shows an accuracy of about 95%. YAGO is based on a logically clean model, which is decidable, extensible, and compatible with RDFS. Finally, we show how YAGO can be further extended by state-of-the-art information extraction techniques.