Results 1 - 10
of
1,057
Wireless sensor networks: a survey
, 2002
"... This paper describes the concept of sensor networks which has been made viable by the convergence of microelectro-mechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review of fact ..."
Abstract
-
Cited by 2008 (23 self)
- Add to MetaCart
This paper describes the concept of sensor networks which has been made viable by the convergence of microelectro-mechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review of factors influencing the design of sensor networks is provided. Then, the communication architecture for sensor networks is outlined, and the algorithms and protocols developed for each layer in the literature are explored. Open research issues for the realization of sensor networks are
Location Systems for Ubiquitous Computing
, 2001
"... This survey and taxonomy of location systems for mobile-computing applications describes... ..."
Abstract
-
Cited by 954 (19 self)
- Add to MetaCart
(Show Context)
This survey and taxonomy of location systems for mobile-computing applications describes...
Tinydb: An acquisitional query processing system for sensor networks
- ACM Trans. Database Syst
, 2005
"... We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs of acq ..."
Abstract
-
Cited by 626 (8 self)
- Add to MetaCart
We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs of acquiring data, we are able to significantly reduce power consumption over traditional passive systems that assume the a priori existence of data. We discuss simple extensions to SQL for controlling data acquisition, and show how acquisitional issues influence query optimization, dissemination, and execution. We evaluate these issues in the context of TinyDB, a distributed query processor for smart sensor devices, and show how acquisitional techniques can provide significant reductions in power consumption on our sensor devices. Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—Query languages; H.2.4 [Database Management]: Systems—Distributed databases; query processing
Vivaldi: A Decentralized Network Coordinate System
- In SIGCOMM
, 2004
"... Large-scale Internet applications can benefit from an ability to predict round-trip times to other hosts without having to contact them first. Explicit measurements are often unattractive because the cost of measurement can outweigh the benefits of exploiting proximity information. Vivaldi is a simp ..."
Abstract
-
Cited by 602 (4 self)
- Add to MetaCart
(Show Context)
Large-scale Internet applications can benefit from an ability to predict round-trip times to other hosts without having to contact them first. Explicit measurements are often unattractive because the cost of measurement can outweigh the benefits of exploiting proximity information. Vivaldi is a simple, light-weight algorithm that assigns synthetic coordinates to hosts such that the distance between the coordinates of two hosts accurately predicts the communication latency between the hosts.
Range-Free Localization Schemes for Large Scale Sensor Networks
, 2003
"... Wireless Sensor Networks have been proposed for a multitude of location-dependent applications. For such systems, the cost and limitations of hardware on sensing nodes prevent the use of range-based localization schemes that depend on absolute point-to-point distance estimates. Because coarse accura ..."
Abstract
-
Cited by 525 (8 self)
- Add to MetaCart
Wireless Sensor Networks have been proposed for a multitude of location-dependent applications. For such systems, the cost and limitations of hardware on sensing nodes prevent the use of range-based localization schemes that depend on absolute point-to-point distance estimates. Because coarse accuracy is sufficient for most sensor network applications, solutions in range-free localization are being pursued as a cost-effective alternative to more expensive range-based approaches. In this paper, we present APIT, a novel localization algorithm that is range-free. We show that our APIT scheme performs best when an irregular radio pattern and random node placement are considered, and low communication overhead is desired. We compare our work via extensive simulation, with three state-of-the-art range-free localization schemes to identify the preferable system configurations of each. In addition, we study the effect of location error on routing and tracking performance. We show that routing performance and tracking accuracy are not significantly affected by localization error when the error is less than 0.4 times the communication radio radius.
Convex Position Estimation in Wireless Sensor Networks
"... A method for estimating unknown node positions in a sensor network based exclusively on connectivity-induced constraints is described. Known peer-to-peer communication in the network is modeled as a set of geometric constraints on the node positions. The global solution of a feasibility problem fo ..."
Abstract
-
Cited by 493 (0 self)
- Add to MetaCart
A method for estimating unknown node positions in a sensor network based exclusively on connectivity-induced constraints is described. Known peer-to-peer communication in the network is modeled as a set of geometric constraints on the node positions. The global solution of a feasibility problem for these constraints yields estimates for the unknown positions of the nodes in the network. Providing that the constraints are tight enough, simulation illustrates that this estimate becomes close to the actual node positions. Additionally, a method for placing rectangular bounds around the possible positions for all unknown nodes in the network is given. The area of the bounding rectangles decreases as additional or tighter constraints are included in the problem. Specific models are suggested and simulated for isotropic and directional communication, representative of broadcast-based and optical transmission respectively, though the methods presented are not limited to these simple cases.
Ad hoc positioning system (APS) using AoA
, 2003
"... AoA(Angle of Arrival) is a well known method used for positioning in providing services such as E911, and for other military and civil radio-location applications, such as sonars and radars. Although devices such as GPS receivers and digital compasses provide good positioning and orientation outdoo ..."
Abstract
-
Cited by 484 (6 self)
- Add to MetaCart
AoA(Angle of Arrival) is a well known method used for positioning in providing services such as E911, and for other military and civil radio-location applications, such as sonars and radars. Although devices such as GPS receivers and digital compasses provide good positioning and orientation outdoors, there are many applications requiring the same facilities indoors, where line of sight access to satellites is unavailable, or earth magnetic readings are unreliable. We propose a method for all nodes to determine their orientation and position in an ad hoc network where only a fraction of nodes have the positioning capabilities, under the assumption that each node has the AoA capability.
Robust Distributed Network Localization with Noisy Range Measurements
, 2004
"... This paper describes a distributed, linear-time algorithm for localizing sensor network nodes in the presence of range measurement noise and demonstrates the algorithm on a physical network. We introduce the probabilistic notion of robust quadrilaterals as a way to avoid flip ambiguities that otherw ..."
Abstract
-
Cited by 403 (20 self)
- Add to MetaCart
This paper describes a distributed, linear-time algorithm for localizing sensor network nodes in the presence of range measurement noise and demonstrates the algorithm on a physical network. We introduce the probabilistic notion of robust quadrilaterals as a way to avoid flip ambiguities that otherwise corrupt localization computations. We formulate the localization problem as a two-dimensional graph realization problem: given a planar graph with approximately known edge lengths, recover the Euclidean position of each vertex up to a global rotation and translation. This formulation is applicable to the localization of sensor networks in which each node can estimate the distance to each of its neighbors, but no absolute position reference such as GPS or fixed anchor nodes is available. We implemented the algorithm on a physical sensor network and empirically assessed its accuracy and performance. Also, in simulation, we demonstrate that the algorithm scales to large networks and handles real-world deployment geometries. Finally, we show how the algorithm supports localization of mobile nodes.
The Sybil attack in sensor networks: Analysis & Defenses
- THIRD INTERNATIONAL SYMPOSIUM ON INFORMATION PROCESSING IN SENSOR NETWORKS, IPSN, 26 – 27 APRIL 2004 PAGE(S): 259 – 268
, 2004
"... Security is important for many sensor network applications. A particularly harmful attack against sensor and ad hoc networks is known as the Sybil attack [6], where a node illegitimately claims multiple identities. This paper system-atically analyzes the threat posed by the Sybil attack to wireless ..."
Abstract
-
Cited by 392 (1 self)
- Add to MetaCart
Security is important for many sensor network applications. A particularly harmful attack against sensor and ad hoc networks is known as the Sybil attack [6], where a node illegitimately claims multiple identities. This paper system-atically analyzes the threat posed by the Sybil attack to wireless sensor networks. We demonstrate that the attack can be exceedingly detrimental to many important functions of the sensor network such as routing, resource allocation, misbehavior detection, etc. We establish a classification of different types of the Sybil attack, which enables us to bet-ter understand the threats posed by each type, and better design countermeasures against each type. We then propose several novel techniques to defend against the Sybil attack, and analyze their effectiveness quantitatively.
Distributed Localization in Wireless Sensor Networks: A Quantitative Comparison
, 2003
"... This paper studies the problem of determining the node locations in ad-hoc sensor networks. We compare three distributed localization algorithms (Ad-hoc positioning, Robust positioning, and N-hop multilateration) on a single simulation platform. The algorithms share a common, three-phase structure: ..."
Abstract
-
Cited by 302 (7 self)
- Add to MetaCart
This paper studies the problem of determining the node locations in ad-hoc sensor networks. We compare three distributed localization algorithms (Ad-hoc positioning, Robust positioning, and N-hop multilateration) on a single simulation platform. The algorithms share a common, three-phase structure: (1) determine node--anchor distances, (2) compute node positions, and (3) optionally refine the positions through an iterative procedure. We present a detailed analysis comparing the various alternatives for each phase, as well as a head-to-head comparison of the complete algorithms. The main conclusion is that no single algorithm performs best; which algorithm is to be preferred depends on the conditions (range errors, connectivity, anchor fraction, etc.). In each case, however, there is significant room for improving accuracy and/or increasing coverage.