Results 1  10
of
39
Safety Verification of Hybrid Systems Using Barrier Certificates
 In Hybrid Systems: Computation and Control
, 2004
"... This paper presents a novel methodology for safety verification of hybrid systems. For proving that all trajectories of a hybrid system do not enter an unsafe region, the proposed method uses a function of state termed a barrier certificate. The zero level set of a barrier certificate separates ..."
Abstract

Cited by 89 (6 self)
 Add to MetaCart
(Show Context)
This paper presents a novel methodology for safety verification of hybrid systems. For proving that all trajectories of a hybrid system do not enter an unsafe region, the proposed method uses a function of state termed a barrier certificate. The zero level set of a barrier certificate separates the unsafe region from all possible trajectories starting from a given set of initial conditions, hence providing an exact proof of system safety. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes nonlinearity, uncertainty, and constraints can be handled directly within this framework.
A framework for worstcase and stochastic safety verification using barrier certificates
 IEEE TRANSACTIONS ON AUTOMATIC CONTROL
, 2007
"... This paper presents a methodology for safety verification of continuous and hybrid systems in the worstcase and stochastic settings. In the worstcase setting, a function of state termed barrier certificate is used to certify that all trajectories of the system starting from a given initial set do ..."
Abstract

Cited by 50 (1 self)
 Add to MetaCart
This paper presents a methodology for safety verification of continuous and hybrid systems in the worstcase and stochastic settings. In the worstcase setting, a function of state termed barrier certificate is used to certify that all trajectories of the system starting from a given initial set do not enter an unsafe region. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes it possible to handle nonlinearity, uncertainty, and constraints directly within this framework. In the stochastic setting, our method computes an upper bound on the probability that a trajectory of the system reaches the unsafe set, a bound whose validity is proven by the existence of a barrier certificate. For polynomial systems, barrier certificates can be constructed using convex optimization, and hence the method is computationally tractable. Some examples are provided to illustrate the use of the method.
Model Checking Genetic Regulatory Networks using GNA and CADP
 In: Proceedings of the 11th International SPIN Workshop on Model Checking of Software SPIN’2004
, 2004
"... who are interested in the interdisciplinary methods and applications relevant to the analysis, design and management of complex systems. 15 St. Mary’s St. Brookline MA 02446 l 617.358.1295 l www.bu.edu/systems ..."
Abstract

Cited by 45 (6 self)
 Add to MetaCart
(Show Context)
who are interested in the interdisciplinary methods and applications relevant to the analysis, design and management of complex systems. 15 St. Mary’s St. Brookline MA 02446 l 617.358.1295 l www.bu.edu/systems
CounterExample Guided Predicate Abstraction of Hybrid Systems
, 2003
"... Predicate abstraction has emerged to be a powerful technique for extracting finitestate models from infinitestate systems, and has been recently shown to enhance the effectiveness of the reachability computation techniques for hybrid systems. Given a hybrid system with linear dynamics and a set of ..."
Abstract

Cited by 44 (8 self)
 Add to MetaCart
(Show Context)
Predicate abstraction has emerged to be a powerful technique for extracting finitestate models from infinitestate systems, and has been recently shown to enhance the effectiveness of the reachability computation techniques for hybrid systems. Given a hybrid system with linear dynamics and a set of linear predicates, the verifier performs an onthefly search of the finite discrete quotient whose states correspond to the truth assignments to the input predicates. The success of this approach crucially depends on the choice of the predicates used for abstraction. In this paper, we focus on identifying these predicates automatically by analyzing spurious counterexamples generated by the search in the abstract statespace. We present the basic techniques for discovering new predicates that will rule out closely related spurious counterexamples, optimizations of these techniques, implementation of these in the verification tool, and case studies demonstrating the promise of the approach.
Predicate abstraction for reachability analysis of hybrid systems
 ACM Trans. Embedded Comput. Syst
, 2006
"... Embedded systems are increasingly finding their way into a growing range of physical devices. These embedded systems often consist of a collection of software threads interacting concurrently with each other and with a physical, continuous environment. While continuous dynamics have been well studie ..."
Abstract

Cited by 41 (3 self)
 Add to MetaCart
Embedded systems are increasingly finding their way into a growing range of physical devices. These embedded systems often consist of a collection of software threads interacting concurrently with each other and with a physical, continuous environment. While continuous dynamics have been well studied in control theory, and discrete and distributed systems have been investigated in computer science, the combination of the two complexities leads us to the recent research on hybrid systems. This paper addresses the formal analysis of such hybrid systems. Predicate abstraction has emerged to be a powerful technique for extracting finitestate models from infinitestate discrete programs. This paper presents algorithms and tools for reachability analysis of hybrid systems by combining the notion of predicate abstraction with recent techniques for approximating the set of reachable states of linear systems using polyhedra. Given a hybrid system and a set of predicates, we consider the finite discrete quotient whose states correspond to all possible truth assignments to the input predicates. The tool performs an onthefly exploration of the abstract system. We present the basic techniques for guided search in the abstract statespace, optimizations of these techniques, implementation of these in our verifier, and case studies demonstrating the promise of the approach. We also address the completeness of our abstractionbased verification strategy by showing that predicate abstraction of hybrid systems can be used to prove bounded safety.
Nonlinear Systems: Approximating Reach Sets
, 2004
"... We describe techniques to generate useful reachability information for nonlinear dynamical systems. These techniques can be automated for polynomial systems using algorithms from computational algebraic geometry. The generated information can be incorporated into other approaches for doing reachab ..."
Abstract

Cited by 39 (6 self)
 Add to MetaCart
We describe techniques to generate useful reachability information for nonlinear dynamical systems. These techniques can be automated for polynomial systems using algorithms from computational algebraic geometry. The generated information can be incorporated into other approaches for doing reachability computation. It can also be used when abstracting hybrid systems that contain modes with nonlinear dynamics. These techniques are most naturally embedded in the hybrid qualitative abstraction approach proposed by the authors previously. They also show that the formal qualitative abstraction approach is well suited for dealing with nonlinear systems.
Abstractions for Hybrid Systems
 Computer Science Laboratory, SRI International, Menlo Park, CA
, 2004
"... Abstract. We present a procedure for constructing sound finitestate discrete abstractions of hybrid systems. This procedure uses ideas from predicate abstraction to abstract the discrete dynamics and qualitative reasoning to abstract the continuous dynamics of the hybrid system. It relies on the ab ..."
Abstract

Cited by 26 (2 self)
 Add to MetaCart
(Show Context)
Abstract. We present a procedure for constructing sound finitestate discrete abstractions of hybrid systems. This procedure uses ideas from predicate abstraction to abstract the discrete dynamics and qualitative reasoning to abstract the continuous dynamics of the hybrid system. It relies on the ability to decide satisfiability of quantifierfree formulas in some theory rich enough to encode the hybrid system. We characterize the sets of predicates that can be used to create high quality abstractions and we present new approaches to discover such useful sets of predicates. Under certain assumptions, the abstraction procedure can be applied compositionally to abstract a hybrid system described as a composition of two hybrid automata. We show that the constructed abstractions are always sound, but are relatively complete only under certain assumptions.
Safety verification using barrier certificates
 In HSCC, volume 2993 of LNCS
, 2004
"... Abstract — We develop a new method for safety verification of stochastic systems based on functions of states termed barrier certificates. Given a stochastic continuous or hybrid system and sets of initial and unsafe states, our method computes an upper bound on the probability that a trajectory of ..."
Abstract

Cited by 26 (8 self)
 Add to MetaCart
(Show Context)
Abstract — We develop a new method for safety verification of stochastic systems based on functions of states termed barrier certificates. Given a stochastic continuous or hybrid system and sets of initial and unsafe states, our method computes an upper bound on the probability that a trajectory of the system reaches the unsafe set, a bound whose validity is proven by the existence of a barrier certificate. For polynomial systems, both the upper bound and its corresponding barrier certificate can be computed using convex optimization, and hence the method is computationally tractable. I.
Temporal Logic Analysis of Gene Networks under Parameter Uncertainty
 SPECIAL ISSUE ON SYSTEMS BIOLOGY – TRANS. CIRCUITS AND SYSTEMS I / TRANS. AUTOMATIC CONTROL
"... The lack of precise numerical information for the values of biological parameters severely limits the development and analysis of models of genetic regulatory networks. To deal with this problem, we propose a method for the analysis of genetic regulatory networks under parameter uncertainty. We con ..."
Abstract

Cited by 18 (3 self)
 Add to MetaCart
(Show Context)
The lack of precise numerical information for the values of biological parameters severely limits the development and analysis of models of genetic regulatory networks. To deal with this problem, we propose a method for the analysis of genetic regulatory networks under parameter uncertainty. We consider models based on piecewisemultiaffine differential equations, dynamical properties expressed in temporal logic, and intervals for the values of uncertain parameters. The problem is then either to guarantee that the system satisfies the expected properties for every possible parameter value – the corresponding parameter set is then called valid – or to find valid subsets of a given parameter set. The proposed method uses discrete abstractions and model checking, and allows for efficient search of the parameter space. However, the abstraction process creates spurious behaviors in the abstract systems, along which time does not progress. Consequently, the verification of liveness properties, expressing that something will eventually happen, and implicitly assuming progress of time, often fails. A solution to this second problem is proposed using the notion of transient regions. This approach has been implemented in a tool for robust verification of gene networks (RoVerGeNe) and applied to the tuning of a synthetic network built in E. coli.
A tutorial on sum of squares techniques for system analysis
 In Proceedings of the American control conference, ASCC
, 2005
"... Abstract — This tutorial is about new system analysis techniques that were developed in the past few years based on the sum of squares decomposition. We will present stability and robust stability analysis tools for different classes of systems: systems described by nonlinear ordinary differential e ..."
Abstract

Cited by 17 (1 self)
 Add to MetaCart
(Show Context)
Abstract — This tutorial is about new system analysis techniques that were developed in the past few years based on the sum of squares decomposition. We will present stability and robust stability analysis tools for different classes of systems: systems described by nonlinear ordinary differential equations or differential algebraic equations, hybrid systems with nonlinear subsystems and/or nonlinear switching surfaces, and timedelay systems described by nonlinear functional differential equations. We will also discuss how different analysis questions such as model validation and safety verification can be answered for uncertain nonlinear and hybrid systems. I.