Results 1  10
of
51
A Fast LinearArithmetic Solver for DPLL(T)
, 2006
"... We present a new Simplexbased linear arithmetic solver that can be integrated efficiently in the DPLL(T) framework. The new solver improves over existing approaches by enabling fast backtracking, supporting a priori simplification to reduce the problem size, and providing an efficient form of the ..."
Abstract

Cited by 289 (13 self)
 Add to MetaCart
(Show Context)
We present a new Simplexbased linear arithmetic solver that can be integrated efficiently in the DPLL(T) framework. The new solver improves over existing approaches by enabling fast backtracking, supporting a priori simplification to reduce the problem size, and providing an efficient form of theory propagation. We also present a new and simple approach for solving strict inequalities. Experimental results show substantial performance improvements over existing tools that use other Simplexbased solvers in DPLL(T) decision procedures. The new solver is even competitive with stateoftheart tools specialized for the difference logic fragment.
Lazy Satisfiability Modulo Theories
 JOURNAL ON SATISFIABILITY, BOOLEAN MODELING AND COMPUTATION 3 (2007) 141Â224
, 2007
"... Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a firstorder formula with respect to some decidable firstorder theory T (SMT (T)). These problems are typically not handled adequately by standard automated theorem provers. SMT is being recognized as increasingl ..."
Abstract

Cited by 189 (50 self)
 Add to MetaCart
(Show Context)
Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a firstorder formula with respect to some decidable firstorder theory T (SMT (T)). These problems are typically not handled adequately by standard automated theorem provers. SMT is being recognized as increasingly important due to its applications in many domains in different communities, in particular in formal verification. An amount of papers with novel and very efficient techniques for SMT has been published in the last years, and some very efficient SMT tools are now available. Typical SMT (T) problems require testing the satisfiability of formulas which are Boolean combinations of atomic propositions and atomic expressions in T, so that heavy Boolean reasoning must be efficiently combined with expressive theoryspecific reasoning. The dominating approach to SMT (T), called lazy approach, is based on the integration of a SAT solver and of a decision procedure able to handle sets of atomic constraints in T (Tsolver), handling respectively the Boolean and the theoryspecific components of reasoning. Unfortunately, neither the problem of building an efficient SMT solver, nor even that
Propositional Satisfiability and Constraint Programming: a Comparative Survey
 ACM Computing Surveys
, 2006
"... Propositional Satisfiability (SAT) and Constraint Programming (CP) have developed as two relatively independent threads of research, crossfertilising occasionally. These two approaches to problem solving have a lot in common, as evidenced by similar ideas underlying the branch and prune algorithms ..."
Abstract

Cited by 38 (4 self)
 Add to MetaCart
Propositional Satisfiability (SAT) and Constraint Programming (CP) have developed as two relatively independent threads of research, crossfertilising occasionally. These two approaches to problem solving have a lot in common, as evidenced by similar ideas underlying the branch and prune algorithms that are most successful at solving both kinds of problems. They also exhibit differences in the way they are used to state and solve problems, since SAT’s approach is in general a blackbox approach, while CP aims at being tunable and programmable. This survey overviews the two areas in a comparative way, emphasising the similarities and differences between the two and the points where we feel that one technology can benefit from ideas or experience acquired
On SAT Modulo Theories and Optimization Problems
 In Theory and Applications of Satisfiability Testing (SAT), LNCS 4121
, 2006
"... Abstract. Solvers for SAT Modulo Theories (SMT) can nowadays handle large industrial (e.g., formal hardware and software verification) problems over theories such as the integers, arrays, or equality. Here we show that SMT approaches can also efficiently solve problems that, at first sight, do not h ..."
Abstract

Cited by 38 (4 self)
 Add to MetaCart
(Show Context)
Abstract. Solvers for SAT Modulo Theories (SMT) can nowadays handle large industrial (e.g., formal hardware and software verification) problems over theories such as the integers, arrays, or equality. Here we show that SMT approaches can also efficiently solve problems that, at first sight, do not have a typical SMT flavor. In particular, here we deal with SAT and SMT problems where models M are sought such that a given cost function f(M) is minimized. For this purpose, we introduce a variant of SMT where the theory T DPLL Modulo Theories framework. We discuss two different examples of applications of this SMT variant: weighted MaxSAT and weighted MaxSMT. We show how, with relatively little effort, one can obtain a competitive system that, in the case of weighted MaxSMT in the theory of Difference Logic, can even handle wellknown hard radio frequency assignment problems without any tailored heuristics. These results seem to indicate that MaxSAT/SMT techniques can already be used for realistic applications. 1
veriT: an open, trustable and efficient SMTsolver
 Proc. Conference on Automated Deduction (CADE), volume 5663 of Lecture Notes in Computer Science
, 2009
"... Abstract. This article describes the first public version of the satisfiability modulo theory (SMT) solver veriT. It is opensource, proofproducing, and complete for quantifierfree formulas with uninterpreted functions and difference logic on real numbers and integers. 1 ..."
Abstract

Cited by 36 (7 self)
 Add to MetaCart
(Show Context)
Abstract. This article describes the first public version of the satisfiability modulo theory (SMT) solver veriT. It is opensource, proofproducing, and complete for quantifierfree formulas with uninterpreted functions and difference logic on real numbers and integers. 1
SMT techniques for fast predicate abstraction
 In Computer Aided Verification (CAV
, 2006
"... Abstract. Predicate abstraction is a technique for automatically extracting finitestate abstractions for systems with potentially infinite state space. The fundamental operation in predicate abstraction is to compute the best approximation of a Boolean formula ϕ over a set of predicates P. In this ..."
Abstract

Cited by 32 (2 self)
 Add to MetaCart
(Show Context)
Abstract. Predicate abstraction is a technique for automatically extracting finitestate abstractions for systems with potentially infinite state space. The fundamental operation in predicate abstraction is to compute the best approximation of a Boolean formula ϕ over a set of predicates P. In this work, we demonstrate the use for this operation of a decision procedure based on the DPLL(T) framework for SAT Modulo Theories (SMT). The new algorithm is based on a careful generation of the set of all satisfying assignments over a set of predicates. It consistently outperforms previous methods by a factor of at least 20, on a diverse set of hardware and software verification benchmarks. We report detailed analysis of the results and the impact of a number of variations of the techniques. We also propose and evaluate a scheme for incremental refinement of approximations for predicate abstraction in the above framework. 1
Fast and Flexible Difference Constraint Propagation for DPLL(T)
 IN PROC. SAT, VOLUME 4121 OF LNCS
, 2006
"... In the context of DPLL(T), theory propagation is the process of dynamically selecting consequences of a conjunction of constraints from a given set of candidate constraints. We present improvements to a fast theory propagation procedure for difference constraints of the form x − y ≤ c. These improve ..."
Abstract

Cited by 30 (1 self)
 Add to MetaCart
(Show Context)
In the context of DPLL(T), theory propagation is the process of dynamically selecting consequences of a conjunction of constraints from a given set of candidate constraints. We present improvements to a fast theory propagation procedure for difference constraints of the form x − y ≤ c. These improvements are demonstrated experimentally.
Delayed theory combination vs. NelsonOppen for satisfiability modulo theories: A comparative analysis
 IN PROC. LPAR’06, VOLUME 4246 OF LNAI
, 2006
"... Many approaches for Satisfiability Modulo Theory (SMT(T)) rely on the integration between a SAT solver and a decision procedure for sets of literals in the background theory T (Tsolver). When T is the combination T1 ∪ T2 of two simpler theories, the approach is typically handled by means of Nelson ..."
Abstract

Cited by 25 (7 self)
 Add to MetaCart
Many approaches for Satisfiability Modulo Theory (SMT(T)) rely on the integration between a SAT solver and a decision procedure for sets of literals in the background theory T (Tsolver). When T is the combination T1 ∪ T2 of two simpler theories, the approach is typically handled by means of NelsonOppen’s (NO) theory combination schema in which two specific Tsolvers deduce and exchange (disjunctions of) interface equalities. In recent papers we have proposed a new approach to SMT(T1 ∪ T2), called Delayed Theory Combination (DTC). Here part or all the (possibly very expensive) task of deducing interface equalities is played by the SAT solver itself, at the potential cost of an enlargement of the boolean search space. In principle this enlargement could be up to exponential in the number of interface equalities generated. In this paper we show that this estimate was too pessimistic. We present a comparative analysis of DTC vs. NO for SMT(T1 ∪T2), which shows that, using stateoftheart SATsolving techniques, the amount of boolean branches performed by DTC can be upper bounded by the number of deductions and boolean branches performed by NO on the same problem. We prove the result for different deduction capabilities of the Tsolvers and for both convex and nonconvex theories.
Integrating simplex with DPLL(T)
 CSL, SRI INTERNATIONAL
, 2006
"... We present a new Simplexbased linear arithmetic solver that can be integrated efficiently in the DPLL(T) framework. The new solver improves over existing approaches by enabling fast backtracking, supporting a priori simplification to reduce the problem size, and providing an efficient form of theor ..."
Abstract

Cited by 24 (5 self)
 Add to MetaCart
(Show Context)
We present a new Simplexbased linear arithmetic solver that can be integrated efficiently in the DPLL(T) framework. The new solver improves over existing approaches by enabling fast backtracking, supporting a priori simplification to reduce the problem size, and providing an efficient form of theory propagation. We also present a new and simple approach for solving strict inequalities. Experimental results show substantial performance improvements over existing tools that use other Simplexbased solvers in DPLL(T) decision procedures. The new solver is even competitive with stateoftheart tools specialized for the difference logic fragment.