Results 1 - 10
of
436
A Secure Routing Protocol for Ad Hoc Networks
, 2002
"... Most recent ad hoc network research has focused on providing routing services without considering security. In this paper, we detail security threats against ad hoc routing protocols, specifically examining AODV and DSR. In light of these threats, we identify three different environments with distin ..."
Abstract
-
Cited by 508 (0 self)
- Add to MetaCart
(Show Context)
Most recent ad hoc network research has focused on providing routing services without considering security. In this paper, we detail security threats against ad hoc routing protocols, specifically examining AODV and DSR. In light of these threats, we identify three different environments with distinct security requirements. We propose a solution to one, the managed-open scenario where no network infrastructure is pre-deployed, but a small amount of prior security coordination is expected. Our protocol, ARAN, is based on certificates and successfully defeats all identified attacks.
On-demand Multipath Distance Vector Routing in Ad Hoc Networks
- in Proceedings of IEEE International Conference on Network Protocols (ICNP
, 2001
"... We develop an on-demand, multipath distance vector protocol for mobile ad hoc networks. Specifically, we propose multipath extensions to a well-studied single path routing protocol known as Ad hoc On-demand Distance Vector (AODV). The resulting protocol is referred to as Ad hoc Ondemand Multipath Di ..."
Abstract
-
Cited by 360 (3 self)
- Add to MetaCart
(Show Context)
We develop an on-demand, multipath distance vector protocol for mobile ad hoc networks. Specifically, we propose multipath extensions to a well-studied single path routing protocol known as Ad hoc On-demand Distance Vector (AODV). The resulting protocol is referred to as Ad hoc Ondemand Multipath Distance Vector (AOMDV). The protocol computes multiple loop-free and link-disjoint paths. Loopfreedom is guaranteed by using a notion of "advertised hopcount." Link-disjointness of multiple paths is achieved by using a particular property of flooding. Performance comparison of AOMDV with AODV using ns-2 simulations shows that AOMDV is able to achieve a remarkable improvement in the end-to-end delay --- often more than a factor of two, and is also able to reduce routing overheads by about 20%. 1
Centralized Channel Assignment and Routing Algorithms for Multi-channel Wireless Mesh Networks
- ACM Mobile Computing and Communications Review
, 2004
"... this paper, we propose and evaluate one of the first multi-channel multi-hop wireless ad-hoc network architectures that can be built using standard 802.11 hardware by equipping each node with multiple network interface cards (NICs) operating on different channels. We focus our attention on wireless ..."
Abstract
-
Cited by 227 (1 self)
- Add to MetaCart
(Show Context)
this paper, we propose and evaluate one of the first multi-channel multi-hop wireless ad-hoc network architectures that can be built using standard 802.11 hardware by equipping each node with multiple network interface cards (NICs) operating on different channels. We focus our attention on wireless mesh networks that serve as the backbone for relaying end-user traffic from wireless access points to the wired network. The idea of exploiting multiple channels is particularly appealing in wireless mesh networks because of their high capacity requirements to support backbone traffic
A Framework for Reliable Routing in Mobile Ad Hoc Networks
- IEEE INFOCOM
, 2003
"... Mobile ad hoc networks consist of nodes that are often vulnerable to failure. As such, it is important to provide redundancy in terms of providing multiple node-disjoint paths from a source to a destination. We first propose a modified version of the popular AODV protocol that allows us to discover ..."
Abstract
-
Cited by 134 (1 self)
- Add to MetaCart
(Show Context)
Mobile ad hoc networks consist of nodes that are often vulnerable to failure. As such, it is important to provide redundancy in terms of providing multiple node-disjoint paths from a source to a destination. We first propose a modified version of the popular AODV protocol that allows us to discover multiple node-disjoint paths from a source to a destination. We find that very few of such paths can be found. Furthermore, as distances between sources and destinations increase, bottlenecks inevitably occur and thus, the possibility of finding multiple paths is considerably reduced. We conclude that it is necessary to place what we call reliable nodes (in terms of both being robust to failure and being secure) in the network for efficient operations. We propose a deployment strategy that determines the positions and the trajectories of these reliable nodes such that we can achieve a framework for reliably routing information. We define a notion of a reliable path which is made up of multiple segments, each of which either entirely consists of reliable nodes, or contains a preset number of multiple paths between the end points of the segment. We show that the probability of establishing a reliable path between a random source and destination pair increases considerably even with a low percentage of reliable nodes when we control their positions and trajectories in accordance with our algorithm.
Establishing Pair-wise Keys for Secure Communication in Ad Hoc Networks: A Probabilistic Approach
, 2003
"... A prerequisite for secure communication between two nodes in an ad hoc network is that the nodes share a key to bootstrap their trust relationship. In this paper, we present a scalable and distributed protocol that enables two nodes to establish a pairwise shared key on the fly, without requiring th ..."
Abstract
-
Cited by 126 (11 self)
- Add to MetaCart
A prerequisite for secure communication between two nodes in an ad hoc network is that the nodes share a key to bootstrap their trust relationship. In this paper, we present a scalable and distributed protocol that enables two nodes to establish a pairwise shared key on the fly, without requiring the use of any on-line key distribution center. The design of our protocol is based on a novel combination of two techniques – probabilistic key sharing and threshold secret sharing. Our protocol is scalable since every node only needs to possess a small number of keys, independent of the network size, and it is computationally efficient because it only relies on symmetric key cryptography based operations. We show that a pairwise key established between two nodes using our protocol is secure against a collusion attack by up to a certain number of compromised nodes. We also show through a set of simulations that our protocol can be parameterized to meet the desired levels of performance, security and storage for the application under consideration. 1
Video transport over ad hoc networks: Multistream coding with multipath transport
- IEEE J. Sel. Areas Commun
, 2003
"... Abstract—Enabling video transport over ad hoc networks is more challenging than over other wireless networks. The wireless links in an ad hoc network are highly error prone and can go down frequently because of node mobility, interference, channel fading, and the lack of infrastructure. However, the ..."
Abstract
-
Cited by 118 (20 self)
- Add to MetaCart
(Show Context)
Abstract—Enabling video transport over ad hoc networks is more challenging than over other wireless networks. The wireless links in an ad hoc network are highly error prone and can go down frequently because of node mobility, interference, channel fading, and the lack of infrastructure. However, the mesh topology of ad hoc networks implies that it is possible to establish multiple paths between a source and a destination. Indeed, multipath transport provides an extra degree of freedom in designing error resilient video coding and transport schemes. In this paper, we propose to combine multistream coding with multipath transport, to show that, in addition to traditional error control techniques, path diversity provides an effective means to combat transmission error in ad hoc networks. The schemes that we have examined are: 1) feedback based reference picture selection; 2) layered coding with selective automatic repeat request; and 3) multiple description motion compensation coding. All these techniques are based on the motion compensated prediction technique found in modern video coding standards. We studied the performance of these three schemes via extensive simulations using both Markov channel models and OPNET Modeler. To further validate the viability and performance advantages of these schemes, we implemented an ad hoc multiple path video streaming testbed using notebook computers and IEEE 802.11b cards. The results show that great improvement in video quality can be achieved over the standard schemes with limited additional cost. Each of these three video coding/transport techniques is best suited for a particular environment, depending on the availability of a feedback channel, the end-to-end delay constraint, and the error characteristics of the paths. Index Terms—Ad hoc networks, error resilience, IEEE 802.11, multipath transport, video transport, wireless networks.
AntHocNet: An adaptive nature-inspired algorithm for routing in mobile ad hoc networks
- EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS
, 2005
"... In this paper we describe AntHocNet, an algorithm for routing in mobile ad hoc networks. It is a hybrid algorithm, which combines reactive route setup with proactive route probing, maintenance and improvement. The algorithm is based on the Nature-inspired Ant Colony Optimization framework. Paths are ..."
Abstract
-
Cited by 108 (16 self)
- Add to MetaCart
In this paper we describe AntHocNet, an algorithm for routing in mobile ad hoc networks. It is a hybrid algorithm, which combines reactive route setup with proactive route probing, maintenance and improvement. The algorithm is based on the Nature-inspired Ant Colony Optimization framework. Paths are learned by guided Monte Carlo sampling using ant-like agents communicating in a stigmergic way. In an extensive set of simulation experiments, we compare AntHocNet with AODV, a reference algorithm in this research area. We show that our algorithm can outperform AODV on different evaluation criteria. AntHocNet’s performance advantage is visible over a broad range of possible network scenarios, and increases for larger, sparser and more mobile networks. AntHocNet is also more scalable than AODV.
Multipath routing in mobile ad hoc networks: Issues and challenges
- IN PERFORMANCE TOOLS AND APPLICATIONS TO NETWORKED SYSTEMS, VOLUME 2965 OF LNCS
, 2004
"... Mobile ad hoc networks (MANETs) consist of a collection of wireless mobile nodes which dynamically exchange data among themselves without the reliance on a fixed base station or a wired backbone network. MANET nodes are typically distinguished by their limited power, processing, and memory resources ..."
Abstract
-
Cited by 94 (0 self)
- Add to MetaCart
Mobile ad hoc networks (MANETs) consist of a collection of wireless mobile nodes which dynamically exchange data among themselves without the reliance on a fixed base station or a wired backbone network. MANET nodes are typically distinguished by their limited power, processing, and memory resources as well as high degree of mobility. In such networks, the wireless mobile nodes may dynamically enter the network as well as leave the network. Due to the limited transmission range of wireless network nodes, multiple hops are usually needed for a node to exchange information with any other node in the network. Thus routing is a crucial issue to the design of a MANET. In this paper, we specifically examine the issues of multipath routing in MANETs. Multipath routing allows the establishment of multiple paths between a single source and single destination node. It is typically proposed in order to increase the reliability of data transmission (i.e., fault tolerance) or to provide load balancing. Load balancing is of especial importance in MANETs because of the limited bandwidth between the nodes. We also discuss the application of multipath routing to support application constraints such as reliability, load-balancing, energy-conservation, and Quality-of-Service (QoS).
Performance Analysis of Reactive Shortest Path and Multi-path Routing Mechanism with Load Balance
, 2003
"... Research on multi-path routing protocols to provide improved throughput and route resilience as compared with single-path routing has been explored in details in the context of wired networks. However, multi-path routing mechanism has not been explored thoroughly in the domain of ad hoc networks. In ..."
Abstract
-
Cited by 84 (0 self)
- Add to MetaCart
Research on multi-path routing protocols to provide improved throughput and route resilience as compared with single-path routing has been explored in details in the context of wired networks. However, multi-path routing mechanism has not been explored thoroughly in the domain of ad hoc networks. In this paper, we analyze and compare reactive single-path and multi-path routing with load balance mechanisms in ad hoc networks, in terms of overhead, traffic distribution and connection throughput. The results reveals that in comparison with general single-path routing protocol, multi-path routing mechanism creates more overheads but provides better performance in congestion and capacity provided that the route length is within a certain upper bound which is derivable. The analytical results are further confirmed by simulation.
A network-aware MAC and routing protocol for effective load balancing in ad hoc wireless networks with directional antenna
- in Proceedings of ACM MobiHoc
, 2003
"... Use of directional antenna in the context of ad hoc wireless networks can largely reduce radio interference, thereby improving the utilization of wireless medium. Our major contribution in this paper is to devise a routing strategy, along with a MAC protocol, that exploits the advantages of directio ..."
Abstract
-
Cited by 71 (8 self)
- Add to MetaCart
(Show Context)
Use of directional antenna in the context of ad hoc wireless networks can largely reduce radio interference, thereby improving the utilization of wireless medium. Our major contribution in this paper is to devise a routing strategy, along with a MAC protocol, that exploits the advantages of directional antenna in ad hoc networks for improved system performance. In this paper, we have illustrated a MAC and routing protocol for ad hoc networks using directional antenna with the objective of effective load balancing through the selection of maximally zone disjoint routes. Zone-disjoint routes would minimize the effect of route coupling by selecting routes in such a manner that data communication over one route will minimally interfere with data communication over the others. In our MAC protocol, each node keeps certain neighborhood status information dynamically in order that each node is aware of its neighborhood and communications going on in its neighborhood at that instant of time. This status information from each node is propagated periodically throughout the network. This would help each node to capture the approximate network status periodically that helps each node to become topology-aware and aware of communications going on in the network, although in an approximate manner. With this status information, each intermediate node adaptively computes routes towards destination. The performance of the proposed framework has been evaluated on QualNet Network Simulator with DSR (as in QualNet) as a benchmark. Our proposed mechanism shows four to five times performance improvement over DSR, thus demonstrating the effectiveness of this proposal.