Results 1 - 10
of
191
TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class Object . . .
- IN ECCV
, 2006
"... This paper proposes a new approach to learning a discriminative model of object classes, incorporating appearance, shape and context information efficiently. The learned model is used for automatic visual recognition and semantic segmentation of photographs. Our discriminative model exploits nov ..."
Abstract
-
Cited by 426 (17 self)
- Add to MetaCart
This paper proposes a new approach to learning a discriminative model of object classes, incorporating appearance, shape and context information efficiently. The learned model is used for automatic visual recognition and semantic segmentation of photographs. Our discriminative model exploits novel features, based on textons, which jointly model shape and texture. Unary classification and feature selection is achieved using shared boosting to give an efficient classifier which can be applied to a large number of classes. Accurate image segmentation is achieved by incorporating these classifiers in a conditional random field. Efficient training
Using Multiple Segmentations to Discover Objects and their Extent in Image Collections
- CVPR
"... Given a large dataset of images, we seek to automatically determine the visually similar object and scene classes together with their image segmentation. To achieve this we combine two ideas: (i) that a set of segmented objects can be partitioned into visual object classes using topic discovery mode ..."
Abstract
-
Cited by 315 (26 self)
- Add to MetaCart
(Show Context)
Given a large dataset of images, we seek to automatically determine the visually similar object and scene classes together with their image segmentation. To achieve this we combine two ideas: (i) that a set of segmented objects can be partitioned into visual object classes using topic discovery models from statistical text analysis; and (ii) that visual object classes can be used to assess the accuracy of a segmentation. To tie these ideas together we compute multiple segmentations of each image and then: (i) learn the object classes; and (ii) choose the correct segmentations. We demonstrate that such an algorithm succeeds in automatically discovering many familiar objects in a variety of image datasets, including those from Caltech, MSRC and LabelMe. 1.
TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling Texture, Layout, and Context
, 2007
"... This paper details a new approach for learning a discriminative model of object classes, incorporating texture, layout, and context information efficiently. The learned model is used for automatic visual understanding and semantic segmentation of photographs. Our discriminative model exploits textur ..."
Abstract
-
Cited by 217 (9 self)
- Add to MetaCart
This paper details a new approach for learning a discriminative model of object classes, incorporating texture, layout, and context information efficiently. The learned model is used for automatic visual understanding and semantic segmentation of photographs. Our discriminative model exploits texture-layout filters, novel features based on textons, which jointly model patterns of texture and their spatial layout. Unary classification and feature selection is achieved using shared boosting to give an efficient classifier which can be applied to a large number of classes. Accurate image segmentation is achieved by incorporating the unary classifier in a conditional random field, which (i) captures the spatial interactions between class labels of neighboring pixels, and (ii) improves the segmentation of specific object instances. Efficient training of the model on large datasets is achieved by exploiting both random feature selection and piecewise training methods. High classification and segmentation accuracy is
LOCUS: Learning Object Classes with Unsupervised Segmentation
- in ICCV
, 2005
"... We address the problem of learning object class models and object segmentations from unannotated images. We introduce LOCUS (Learning Object Classes with Unsupervised Segmentation) which uses a generative probabilistic model to combine bottom-up cues of color and edge with top-down cues of shape and ..."
Abstract
-
Cited by 195 (8 self)
- Add to MetaCart
(Show Context)
We address the problem of learning object class models and object segmentations from unannotated images. We introduce LOCUS (Learning Object Classes with Unsupervised Segmentation) which uses a generative probabilistic model to combine bottom-up cues of color and edge with top-down cues of shape and pose. A key aspect of this model is that the object appearance is allowed to vary from image to image, allowing for significant within-class variation. By iteratively updating the belief in the object’s position, size, segmentation and pose, LOCUS avoids making hard decisions about any of these quantities and so allows for each to be refined at any stage. We show that LOCUS successfully learns an object class model from unlabeled images, whilst also giving segmentation accuracies that rival existing supervised methods. Finally, we demonstrate simultaneous recognition and segmentation in novel images using the learned models for a number of object classes, as well as unsupervised object discovery and tracking in video. 1.
Auto-context and its Application to High-level Vision Tasks
- In Proc. CVPR
"... The notion of using context information for solving high-level vision and medical image segmentation problems has been increasingly realized in the field. However, how to learn an effective and efficient context model, together with an image appearance model, remains mostly unknown. The current lite ..."
Abstract
-
Cited by 156 (6 self)
- Add to MetaCart
(Show Context)
The notion of using context information for solving high-level vision and medical image segmentation problems has been increasingly realized in the field. However, how to learn an effective and efficient context model, together with an image appearance model, remains mostly unknown. The current literature using Markov Random Fields (MRFs) and Conditional Random Fields (CRFs) often involves specific algorithm design, in which the modeling and computing stages are studied in isolation. In this paper, we propose the auto-context algorithm. Given a set of training images and their corresponding label maps, we first learn a classifier on local image patches. The discriminative probability (or classification confidence) maps created by the learned classifier are then used as context information, in addition to the original image patches, to train a new classifier. The algorithm then iterates until convergence. Auto-context integrates low-level and context information by fusing a large number of low-level appearance features with context and implicit shape information. The resulting discriminative algorithm is general and easy to implement. Under nearly the same parameter settings in training, we apply the algorithm to three challenging vision applications: foreground/background segregation, human body configuration estimation, and scene region labeling. Moreover, context also plays a very important role in medical/brain images where the anatomical structures are mostly constrained to relatively fixed positions. With only some slight changes resulting from using 3D instead of 2D features, the auto-context algorithm applied to brain MRI image segmentation is shown to outperform state-of-the-art algorithms specifically designed for this domain. Furthermore, the scope of the proposed algorithm goes beyond image analysis and it has the potential to be used for a wide variety of problems in multi-variate labeling.
The layout consistent random field for recognizing and segmenting partially occluded objects
- In Proceedings of IEEE CVPR
, 2006
"... This paper addresses the problem of detecting and segmenting ..."
Abstract
-
Cited by 152 (8 self)
- Add to MetaCart
(Show Context)
This paper addresses the problem of detecting and segmenting
Contour-based learning for object detection
- In Proceedings, International Conference on Computer Vision
, 2005
"... We present a novel categorical object detection scheme that uses only local contour-based features. A two-stage, partially supervised learning architecture is proposed: a rudimentary detector is learned from a very small set of segmented images and applied to a larger training set of unsegmented ima ..."
Abstract
-
Cited by 152 (1 self)
- Add to MetaCart
We present a novel categorical object detection scheme that uses only local contour-based features. A two-stage, partially supervised learning architecture is proposed: a rudimentary detector is learned from a very small set of segmented images and applied to a larger training set of unsegmented images; the second stage bootstraps these detections to learn an improved classifier while explicitly training against clutter. The detectors are learned with a boosting algorithm which creates a location-sensitive classifier using a discriminative set of features from a randomly chosen dictionary of contour fragments. We present results that are very competitive with other state-of-the-art object detection schemes and show robustness to object articulations, clutter, and occlusion. Our major contributions are the application of boosted local contour-based features for object detection in a partially supervised learning framework, and an efficient new boosting procedure for simultaneously selecting features and estimating per-feature parameters. 1.
Training restricted Boltzmann machines using approximations to the likelihood gradient
- Proceedings of the 25th international conference on Machine learning
, 2008
"... A new algorithm for training Restricted Boltzmann Machines is introduced. The algorithm, named Persistent Contrastive Divergence, is different from the standard Contrastive Divergence algorithms in that it aims to draw samples from almost exactly the model distribution. It is compared to some standa ..."
Abstract
-
Cited by 151 (3 self)
- Add to MetaCart
(Show Context)
A new algorithm for training Restricted Boltzmann Machines is introduced. The algorithm, named Persistent Contrastive Divergence, is different from the standard Contrastive Divergence algorithms in that it aims to draw samples from almost exactly the model distribution. It is compared to some standard Contrastive Divergence and Pseudo-Likelihood algorithms on the tasks of modeling and classifying various types of data. The Persistent Contrastive Divergence algorithm outperforms the other algorithms, and is equally fast and simple.
Spatially coherent latent topic model for concurrent object segmentation and classification
- IN: PROCEEDINGS OF IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION
, 2007
"... We present a novel generative model for simultaneously recognizing and segmenting object and scene classes. Our model is inspired by the traditional bag of words representation of texts and images as well as a number of related generative models, including probabilistic Latent Sematic Analysis (pL ..."
Abstract
-
Cited by 150 (3 self)
- Add to MetaCart
(Show Context)
We present a novel generative model for simultaneously recognizing and segmenting object and scene classes. Our model is inspired by the traditional bag of words representation of texts and images as well as a number of related generative models, including probabilistic Latent Sematic Analysis (pLSA) and Latent Dirichlet Allocation (LDA). A major drawback of the pLSA and LDA models is the assumption that each patch in the image is independently generated given its corresponding latent topic. While such representation provide an efficient computational method, it lacks the power to describe the visually coherent images and scenes. Instead, we propose a spatially coherent latent topic model (Spatial-LTM). Spatial-LTM represents an image containing objects in a hierarchical way by oversegmented image regions of homogeneous appearances and the salient image patches within the regions. Only one single latent topic is assigned to the image patches within each region, enforcing the spatial coherency of the model. This idea gives rise to the following merits of Spatial-LTM: (1) Spatial-LTM provides a unified representation for spatially coherent bag of words topic models; (2) Spatial-LTM can simultaneously segment and classify objects, even in the case of occlusion and multiple instances; and (3) Spatial-LTM can be trained either unsupervised or supervised, as well as when partial object labels are provided. We verify the success of our model in a number of segmentation and classification experiments. E. Coherent regions for