Results 1  10
of
306
FAST TCP: Motivation, Architecture, Algorithms, Performance
, 2004
"... We describe FAST TCP, a new TCP congestion control algorithm for highspeed longlatency networks, from design to implementation. We highlight the approach taken by FAST TCP to address the four difficulties, at both packet and flow levels, which the current TCP implementation has at large windows. W ..."
Abstract

Cited by 369 (18 self)
 Add to MetaCart
(Show Context)
We describe FAST TCP, a new TCP congestion control algorithm for highspeed longlatency networks, from design to implementation. We highlight the approach taken by FAST TCP to address the four difficulties, at both packet and flow levels, which the current TCP implementation has at large windows. We describe the architecture and characterize the equilibrium and stability properties of FAST TCP. We present experimental results comparing our first Linux prototype with TCP Reno, HSTCP, and STCP in terms of throughput, fairness, stability, and responsiveness. FAST TCP aims to rapidly stabilize highspeed longlatency networks into steady, efficient and fair operating points, in dynamic sharing environments, and the preliminary results are promising.
Fairness and optimal stochastic control for heterogeneous networks
 Proc. IEEE INFOCOM, March 2005. TRANSACTIONS ON NETWORKING, VOL
, 2008
"... Abstract — We consider optimal control for general networks with both wireless and wireline components and time varying channels. A dynamic strategy is developed to support all traffic whenever possible, and to make optimally fair decisions about which data to serve when inputs exceed network capaci ..."
Abstract

Cited by 266 (63 self)
 Add to MetaCart
(Show Context)
Abstract — We consider optimal control for general networks with both wireless and wireline components and time varying channels. A dynamic strategy is developed to support all traffic whenever possible, and to make optimally fair decisions about which data to serve when inputs exceed network capacity. The strategy is decoupled into separate algorithms for flow control, routing, and resource allocation, and allows each user to make decisions independent of the actions of others. The combined strategy is shown to yield data rates that are arbitrarily close to the optimal operating point achieved when all network controllers are coordinated and have perfect knowledge of future events. The cost of approaching this fair operating point is an endtoend delay increase for data that is served by the network.
Maximizing Queueing Network Utility Subject to Stability: Greedy Primaldual algorithm
 Queueing Systems
, 2005
"... We study a model of controlled queueing network, which operates and makes control decisions in discrete time. An underlying random network mode determines the set of available controls in each time slot. Each control decision \produces " a certain vector of \commodities"; it also has assoc ..."
Abstract

Cited by 204 (9 self)
 Add to MetaCart
(Show Context)
We study a model of controlled queueing network, which operates and makes control decisions in discrete time. An underlying random network mode determines the set of available controls in each time slot. Each control decision \produces " a certain vector of \commodities"; it also has associated \traditional " queueing control eect, i.e., it determines traÆc (customer) arrival rates, service rates at the nodes, and random routing of processed customers among the nodes. The problem is to nd a dynamic control strategy which maximizes a concave utility function H(X), where X is the average value of commodity vector, subject to the constraint that network queues remain stable. We introduce a dynamic control algorithm, which we call Greedy PrimalDual (GPD) algorithm, and prove its asymptotic optimality. We show that our network model and GPD algorithm accommodate a wide range of applications. As one example, we consider the problem of congestion control of networks where both traÆc sources and network processing nodes may be randomly timevarying and interdependent. We also discuss a variety of resource allocation problems in wireless networks, which in particular involve average power consumption constraints and/or optimization, as well as traÆc rate constraints.
A Tutorial on Decomposition Methods for Network Utility Maximization
 IEEE J. SEL. AREAS COMMUN
, 2006
"... A systematic understanding of the decomposability structures in network utility maximization is key to both resource allocation and functionality allocation. It helps us obtain the most appropriate distributed algorithm for a given network resource allocation problem, and quantifies the comparison ..."
Abstract

Cited by 185 (4 self)
 Add to MetaCart
(Show Context)
A systematic understanding of the decomposability structures in network utility maximization is key to both resource allocation and functionality allocation. It helps us obtain the most appropriate distributed algorithm for a given network resource allocation problem, and quantifies the comparison across architectural alternatives of modularized network design. Decomposition theory naturally provides the mathematical language to build an analytic foundation for the design of modularized and distributed control of networks. In this tutorial paper, we first review the basics of convexity, Lagrange duality, distributed subgradient method, Jacobi and Gauss–Seidel iterations, and implication of different time scales of variable updates. Then, we introduce primal, dual, indirect, partial, and hierarchical decompositions, focusing on network utility maximization problem formulations and the meanings of primal and dual decompositions in terms of network architectures. Finally, we present recent examples on: systematic search for alternative decompositions; decoupling techniques for coupled objective functions; and decoupling techniques for coupled constraint sets that are not readily decomposable.
Hopbyhop Congestion Control over a Wireless MultiHop Network
, 2004
"... This paper focuses on congestion control over multihop, wireless networks. In a wireless network, an important constraint that arises is that due to the MAC (Media Access Control) layer. Many wireless MACs use a timedivision strategy for channel access, where, at any point in space, the physical ch ..."
Abstract

Cited by 138 (1 self)
 Add to MetaCart
(Show Context)
This paper focuses on congestion control over multihop, wireless networks. In a wireless network, an important constraint that arises is that due to the MAC (Media Access Control) layer. Many wireless MACs use a timedivision strategy for channel access, where, at any point in space, the physical channel can be accessed by a single user at each instant of time. In this paper, we develop a fair hopbyhop congestion control algorithm with the MAC constraint being imposed in the form of a channel access time constraint, using an optimization based framework. In the absence of delay, we show that this algorithm are globally stable using a Lyapunov function based approach. Next, in the presence of delay, we show that the hopbyhop control algorithm has the property of spatial spreading. In other words, focused loads at a particular spatial location in the network get "smoothed" over space. We derive bounds on the "peak load" at a node, both with hopbyhop control, as well as with endtoend control, show that significant gains are to be had with the hopbyhop scheme, and validate the analytical results with simulation.
Crosslayer optimization in TCP/IP networks
 IEEE/ACM Transactions on Networking
, 2005
"... Abstract — TCP–AQM can be interpreted as distributed primaldual algorithms to maximize aggregate utility over source rates. We show that an equilibrium of TCP/IP, if exists, maximizes aggregate utility over both source rates and routes, provided congestion prices are used as link costs. An equilibr ..."
Abstract

Cited by 72 (12 self)
 Add to MetaCart
(Show Context)
Abstract — TCP–AQM can be interpreted as distributed primaldual algorithms to maximize aggregate utility over source rates. We show that an equilibrium of TCP/IP, if exists, maximizes aggregate utility over both source rates and routes, provided congestion prices are used as link costs. An equilibrium exists if and only if this utility maximization problem and its Lagrangian dual have no duality gap. In this case, TCP/IP incurs no penalty in not splitting traffic across multiple paths. Such an equilibrium, however, can be unstable. It can be stabilized by adding a static component to link cost, but at the expense of a reduced utility in equilibrium. If link capacities are optimally provisioned, however, pure static routing, which is necessarily stable, is sufficient to maximize utility. Moreover singlepath routing again achieves the same utility as multipath routing at optimality. Index Terms — Utility optimization, congestion control, TCP
Linear Stability of TCP/RED and a Scalable Control
, 2003
"... We demonstrate that the dynamic behavior of queue and average window is determined predominantly by the stability of TCP/RED, not by AIMD probing nor noise tra#c. We develop a general multilink multisource model for TCP/RED and derive a local stability condition in the case of a single link wit ..."
Abstract

Cited by 72 (20 self)
 Add to MetaCart
We demonstrate that the dynamic behavior of queue and average window is determined predominantly by the stability of TCP/RED, not by AIMD probing nor noise tra#c. We develop a general multilink multisource model for TCP/RED and derive a local stability condition in the case of a single link with heterogeneous sources. We validate our model with simulations and illustrate the stability region of TCP/RED. These results suggest that TCP/RED becomes unstable when delay increases, or more strikingly, when link capacity increases. The analysis illustrates the di#culty of setting RED parameters to stabilize TCP: they can be tuned to improve stability, but only at the cost of large queues even when they are dynamically adjusted.
Stochastic Hybrid Systems: Application to Communication Networks
 in Hybrid Systems: Computation and Control, ser. Lect. Notes in Comput. Science
, 2004
"... Abstract. We propose a model for Stochastic Hybrid Systems (SHSs) where transitions between discrete modes are triggered by stochastic events much like transitions between states of a continuoustime Markov chains. However, the rate at which transitions occur is allowed to depend both on the continu ..."
Abstract

Cited by 68 (14 self)
 Add to MetaCart
Abstract. We propose a model for Stochastic Hybrid Systems (SHSs) where transitions between discrete modes are triggered by stochastic events much like transitions between states of a continuoustime Markov chains. However, the rate at which transitions occur is allowed to depend both on the continuous and the discrete states of the SHS. Based on results available for PiecewiseDeterministic Markov Process (PDPs), we provide a formula for the extended generator of the SHS, which can be used to compute expectations and the overall distribution of the state. As an application, we construct a stochastic model for onoff TCP flows that considers both the congestionavoidance and slowstart modes and takes directly into account the distribution of the number of bytes transmitted. Using the tools derived for SHSs, we model the dynamics of the moments of the sending rate by an infinite system of ODEs, which can be truncated to obtain an approximate finitedimensional model. This model shows that, for transfersize distributions reported in the literature, the standard deviation of the sending rate is much larger than its average. Moreover, the later seems to vary little with the probability of packet drop. This has significant implications for the design of congestion control mechanisms. 1
Optimal energy and delay tradeoffs for multiuser wireless downlinks
 Proc. IEEE INFOCOM
, 2006
"... Abstract — We consider the fundamental delay tradeoffs for minimizing energy expenditure in a multiuser wireless downlink with randomly varying channels. First, we extend the BerryGallager bound to a multiuser context, demonstrating that any algorithm that yields average power within O(1/V) of th ..."
Abstract

Cited by 64 (17 self)
 Add to MetaCart
Abstract — We consider the fundamental delay tradeoffs for minimizing energy expenditure in a multiuser wireless downlink with randomly varying channels. First, we extend the BerryGallager bound to a multiuser context, demonstrating that any algorithm that yields average power within O(1/V) of the minimum power required for network stability must also have an average queueing delay greater than or equal to Ω ( √ V). We then develop a class of algorithms, parameterized by V, that come within a logarithmic factor of achieving this fundamental tradeoff. The algorithms overcome an exponential state space explosion, and can be implemented in real time without apriori knowledge of traffic rates or channel statistics. Further, we discover a “superfast ” scheduling mode that beats the BerryGallager bound in the exceptional case when power functions are piecewise linear. Index Terms — queueing analysis, stability, optimization, stochastic control, asymptotic tradeoffs
A CrossLayer Optimization Framework for Multihop Multicast in Wireless Mesh Networks
 JOURNAL ON SELECTED AREAS IN COMMUNICATIONS (JSAC
, 2006
"... The optimal and distributed provisioning of high throughput in mesh networks is known as a fundamental but hard problem. The situation is exacerbated in a wireless setting due to the interference among local wireless transmissions. In this paper, we propose a crosslayer optimization framework for ..."
Abstract

Cited by 63 (6 self)
 Add to MetaCart
The optimal and distributed provisioning of high throughput in mesh networks is known as a fundamental but hard problem. The situation is exacerbated in a wireless setting due to the interference among local wireless transmissions. In this paper, we propose a crosslayer optimization framework for throughput maximization in wireless mesh networks, in which the data routing problem and the wireless medium contention problem are jointly optimized for multihop multicast. We show that the throughput maximization problem can be decomposed into two subproblems: a data routing subproblem at the network layer, and a power control subproblem at the physical layer with a set of Lagrangian dual variables coordinating interlayer coupling. Various effective solutions are discussed for each subproblem. We emphasize the network coding technique for multicast routing and a game theoretic method for interference management, for which efficient and distributed solutions are derived and illustrated. Finally, we show that the proposed framework can be extended to take into account physicallayer wireless multicast in mesh networks.