Results 1 - 10
of
936
Optimization Flow Control, I: Basic Algorithm and Convergence
- IEEE/ACM TRANSACTIONS ON NETWORKING
, 1999
"... We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In thi ..."
Abstract
-
Cited by 694 (64 self)
- Add to MetaCart
We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In this system sources select transmission rates that maximize their own benefits, utility minus bandwidth cost, and network links adjust bandwidth prices to coordinate the sources' decisions. We allow feedback delays to be different, substantial and time-varying, and links and sources to update at different times and with different frequencies. We provide asynchronous distributed algorithms and prove their convergence in a static environment. We present measurements obtained from a preliminary prototype to illustrate the convergence of the algorithm in a slowly time-varying environment.
Resource pricing and the evolution of congestion control
, 1999
"... We describe ways in which the transmission control protocol of the Internet may evolve to support heterogeneous applications. We show that by appropriately marking packets at overloaded resources and by charging a fixed small amount for each mark received, end-nodes are provided with the necessary i ..."
Abstract
-
Cited by 350 (7 self)
- Add to MetaCart
We describe ways in which the transmission control protocol of the Internet may evolve to support heterogeneous applications. We show that by appropriately marking packets at overloaded resources and by charging a fixed small amount for each mark received, end-nodes are provided with the necessary information and the correct incentive to use the network efficiently.
Bandwidth Sharing: Objectives and Algorithms
- IEEE/ACM Transactions on Networking
, 1999
"... This paper concerns the design of distributed algorithms for sharing network bandwidth resources among contending flows. The classical fairness notion is the so-called max-min fairness; F. Kelly [8] has recently introduced the alternative proportional fairness criterion; we introduce a third crit ..."
Abstract
-
Cited by 336 (11 self)
- Add to MetaCart
(Show Context)
This paper concerns the design of distributed algorithms for sharing network bandwidth resources among contending flows. The classical fairness notion is the so-called max-min fairness; F. Kelly [8] has recently introduced the alternative proportional fairness criterion; we introduce a third criterion, which is naturally interpreted in terms of the delays experienced by ongoing transfers. We prove that fixed size window control can achieve fair bandwidth sharing according to any of these criteria, provided scheduling at each link is performed in an appropriate manner. We next consider a distributed random scheme where each traffic source varies its sending rate randomly, based on binary feedback information from the network. We show how to select the source behaviour so as to achieve an equilibrium distribution concentrated around the considered fair rate allocations. This stochastic analysis is then used to assess the asymptotic behaviour of deterministic rate adaption proc...
The price of stability for network design with fair cost allocation
- In Proceedings of the 45th Annual Symposium on Foundations of Computer Science (FOCS
, 2004
"... Abstract. Network design is a fundamental problem for which it is important to understand the effects of strategic behavior. Given a collection of self-interested agents who want to form a network connecting certain endpoints, the set of stable solutions — the Nash equilibria — may look quite differ ..."
Abstract
-
Cited by 281 (30 self)
- Add to MetaCart
(Show Context)
Abstract. Network design is a fundamental problem for which it is important to understand the effects of strategic behavior. Given a collection of self-interested agents who want to form a network connecting certain endpoints, the set of stable solutions — the Nash equilibria — may look quite different from the centrally enforced optimum. We study the quality of the best Nash equilibrium, and refer to the ratio of its cost to the optimum network cost as the price of stability. The best Nash equilibrium solution has a natural meaning of stability in this context — it is the optimal solution that can be proposed from which no user will defect. We consider the price of stability for network design with respect to one of the most widely-studied protocols for network cost allocation, in which the cost of each edge is divided equally between users whose connections make use of it; this fair-division scheme can be derived from the Shapley value, and has a number of basic economic motivations. We show that the price of stability for network design with respect to this fair cost allocation is O(log k), where k is the number of users, and that a good Nash equilibrium can be achieved via best-response dynamics in which users iteratively defect from a starting solution. This establishes that the fair cost allocation protocol is in fact a useful mechanism for inducing strategic behavior to form near-optimal equilibria. We discuss connections to the class of potential games defined by Monderer and Shapley, and extend our results to cases in which users are seeking to balance network design costs with latencies in the constructed network, with stronger results when the network has only delays and no construction costs. We also present bounds on the convergence time of best-response dynamics, and discuss extensions to a weighted game.
REM: Active Queue Management
- IEEE NETWORK
, 2000
"... REM is an active queue management scheme that measures congestion not by a performance measure such as loss or delay, but by a quantity we call price. Price is computed by each link distributively using local information and is fed back to the sources through packet dropping or marking. This decoupl ..."
Abstract
-
Cited by 273 (22 self)
- Add to MetaCart
REM is an active queue management scheme that measures congestion not by a performance measure such as loss or delay, but by a quantity we call price. Price is computed by each link distributively using local information and is fed back to the sources through packet dropping or marking. This decoupling of congestion and performance measures allows REM to achieve high utilization with negligible delays and buffer overflow regardless of the number of. sources. We prove that REM is asymptotically stable and compare its performance with RED using simulations.
Fairness and optimal stochastic control for heterogeneous networks
- Proc. IEEE INFOCOM, March 2005. TRANSACTIONS ON NETWORKING, VOL
, 2008
"... Abstract — We consider optimal control for general networks with both wireless and wireline components and time varying channels. A dynamic strategy is developed to support all traffic whenever possible, and to make optimally fair decisions about which data to serve when inputs exceed network capaci ..."
Abstract
-
Cited by 266 (63 self)
- Add to MetaCart
(Show Context)
Abstract — We consider optimal control for general networks with both wireless and wireline components and time varying channels. A dynamic strategy is developed to support all traffic whenever possible, and to make optimally fair decisions about which data to serve when inputs exceed network capacity. The strategy is decoupled into separate algorithms for flow control, routing, and resource allocation, and allows each user to make decisions independent of the actions of others. The combined strategy is shown to yield data rates that are arbitrarily close to the optimal operating point achieved when all network controllers are coordinated and have perfect knowledge of future events. The cost of approaching this fair operating point is an end-to-end delay increase for data that is served by the network.
A game theoretic framework for bandwidth allocation and pricing in broadband networks
- IEEE/ACM TRANS. ON NETWORKING
, 2000
"... In this paper, we present a game theoretic framework for bandwidth allocation for elastic services in high-speed networks. The framework is based on the idea of the Nash bargaining solution from cooperative game theory, which not only provides the rate settings of users that are Pareto optimal from ..."
Abstract
-
Cited by 238 (11 self)
- Add to MetaCart
(Show Context)
In this paper, we present a game theoretic framework for bandwidth allocation for elastic services in high-speed networks. The framework is based on the idea of the Nash bargaining solution from cooperative game theory, which not only provides the rate settings of users that are Pareto optimal from the point of view of the whole system, but are also consistent with the fairness axioms of game theory. We first consider the centralized problem and then show that this procedure can be decentralized so that greedy optimization by users yields the system optimal bandwidth allocations. We propose a distributed algorithm for implementing the optimal and fair bandwidth allocation and provide conditions for its convergence. The paper concludes with the pricing of elastic connections based on users ’ bandwidth requirements and users’ budget. We show that the above bargaining framework can be used to characterize a rate allocation and a pricing policy which takes into account users’ budget in a fair way and such that the total network revenue is maximized.
Opportunistic transmission scheduling with resource-sharing constraints in wireless networks
- IEEE Journal on Selected Areas in Communications
, 2001
"... We present an “opportunistic ” transmission scheduling policy that exploits time-varying channel conditions and maxi-mizes the system performance stochastically under a certain resource allocation constraint. We establish the optimality of the scheduling scheme, and also that every user experiences ..."
Abstract
-
Cited by 222 (9 self)
- Add to MetaCart
We present an “opportunistic ” transmission scheduling policy that exploits time-varying channel conditions and maxi-mizes the system performance stochastically under a certain resource allocation constraint. We establish the optimality of the scheduling scheme, and also that every user experiences a performance improvement over any non-opportunistic scheduling policy when users have independent performance values. We demonstrate via simulation results that the scheme is robust to es-timation errors, and also works well for nonstationary scenarios, resulting in performance improvements of 20–150 % compared with a scheduling scheme that does not take into account channel conditions. Last, we discuss an extension of our opportunistic scheduling scheme to improve “short-term ” performance.
End-to-end congestion control schemes: Utility functions, random losses and ECN marks
- In Proceedings of IEEE Infocom
, 2000
"... We present a framework for designing end-to-end congestion control schemes in a network where each user may have a different utility function and may experience non-congestion-related losses. We first show that there exists an additive increase-multiplicative decrease scheme using only end-to-end me ..."
Abstract
-
Cited by 215 (1 self)
- Add to MetaCart
(Show Context)
We present a framework for designing end-to-end congestion control schemes in a network where each user may have a different utility function and may experience non-congestion-related losses. We first show that there exists an additive increase-multiplicative decrease scheme using only end-to-end measurable losses such that a socially-optimal solution can be reached. We incorporate round-trip delay in this model, and show that one can generalize observations regarding TCP-type congestion avoidance to more general window flow control schemes. We then consider explicit congestion notification (ECN) as an alternate mechanism (instead of losses) for signaling congestion and show that ECN marking levels can be designed to nearly eliminate losses in the network by choosing the marking level independently for each node in the network. While the ECN marking level at each node may depend on the number of flows through the node, the appropriate marking level can be estimated using only aggregate flow measurements, i.e., per-flow measurements are not required. 1
Bandwidth Sharing and Admission Control for Elastic Traffic
- Telecommunication Systems
, 1998
"... We consider the performance of a network like the Internet handling so-called elastic traffic where the rate of flows adjusts to fill available bandwidth. Realized throughput depends both on the way bandwidth is shared and on the random nature of traffic. We assume traffic consists of point to point ..."
Abstract
-
Cited by 214 (18 self)
- Add to MetaCart
We consider the performance of a network like the Internet handling so-called elastic traffic where the rate of flows adjusts to fill available bandwidth. Realized throughput depends both on the way bandwidth is shared and on the random nature of traffic. We assume traffic consists of point to point transfers of individual documents of finite size arriving according to a Poisson process. Notable results are that weighted sharing has limited impact on perceived quality of service and that discrimination in favour of short documents leads to considerably better performance than fair sharing. In a linear network, max-min fairness is preferable to proportional fairness under random traffic while the converse is true under the assumption of a static configuration of persistent flows. Admission control is advocated as a necessary means to maintain goodput in case of traffic overload. 1 Introduction Traffic in a multiservice network is essentially composed of individual transactions or flows...