Results 1 - 10
of
638
Content-based image retrieval at the end of the early years
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2000
"... The paper presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for imag ..."
Abstract
-
Cited by 1594 (24 self)
- Add to MetaCart
The paper presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for image retrieval systems. Step one of the review is image processing for retrieval sorted by color, texture, and local geometry. Features for retrieval are discussed next, sorted by: accumulative and global features, salient points, object and shape features, signs, and structural combinations thereof. Similarity of pictures and objects in pictures is reviewed for each of the feature types, in close connection to the types and means of feedback the user of the systems is capable of giving by interaction. We briefly discuss aspects of system engineering: databases, system architecture, and evaluation. In the concluding section, we present our view on: the driving force of the field, the heritage from computer vision, the influence on computer vision, the role of similarity and of interaction, the need for databases, the problem of evaluation, and the role of the semantic gap.
Image retrieval: Current techniques, promising directions and open issues
- Journal of Visual Communication and Image Representation
, 1999
"... This paper provides a comprehensive survey of the technical achievements in the research area of image retrieval, especially content-based image retrieval, an area that has been so active and prosperous in the past few years. The survey includes 100+ papers covering the research aspects of image fea ..."
Abstract
-
Cited by 492 (14 self)
- Add to MetaCart
(Show Context)
This paper provides a comprehensive survey of the technical achievements in the research area of image retrieval, especially content-based image retrieval, an area that has been so active and prosperous in the past few years. The survey includes 100+ papers covering the research aspects of image feature representation and extraction, multidimensional indexing, and system design, three of the fundamental bases of content-based image retrieval. Furthermore, based on the state-of-the-art technology available now and the demand from real-world applications, open research issues are identified and future promising research directions are suggested. C ○ 1999 Academic Press 1.
Image retrieval: ideas, influences, and trends of the new age
- ACM COMPUTING SURVEYS
, 2008
"... We have witnessed great interest and a wealth of promise in content-based image retrieval as an emerging technology. While the last decade laid foundation to such promise, it also paved the way for a large number of new techniques and systems, got many new people involved, and triggered stronger ass ..."
Abstract
-
Cited by 464 (13 self)
- Add to MetaCart
(Show Context)
We have witnessed great interest and a wealth of promise in content-based image retrieval as an emerging technology. While the last decade laid foundation to such promise, it also paved the way for a large number of new techniques and systems, got many new people involved, and triggered stronger association of weakly related fields. In this article, we survey almost 300 key theoretical and empirical contributions in the current decade related to image retrieval and automatic image annotation, and in the process discuss the spawning of related subfields. We also discuss significant challenges involved in the adaptation of existing image retrieval techniques to build systems that can be useful in the real world. In retrospect of what has been achieved so far, we also conjecture what the future may hold for image retrieval research.
Image classification for content-based indexing
- IEEE TRANSACTIONS ON IMAGE PROCESSING
, 2001
"... Grouping images into (semantically) meaningful categories using low-level visual features is a challenging and important problem in content-based image retrieval. Using binary Bayesian classifiers, we attempt to capture high-level concepts from low-level image features under the constraint that the ..."
Abstract
-
Cited by 220 (2 self)
- Add to MetaCart
Grouping images into (semantically) meaningful categories using low-level visual features is a challenging and important problem in content-based image retrieval. Using binary Bayesian classifiers, we attempt to capture high-level concepts from low-level image features under the constraint that the test image does belong to one of the classes. Specifically, we consider the hierarchical classification of vacation images; at the highest level, images are classified as indoor or outdoor; outdoor images are further classified as city or landscape; finally, a subset of landscape images is classified into sunset, forest, and mountain classes. We demonstrate that a small vector quantizer (whose optimal size is selected using a modified MDL criterion) can be used to model the class-conditional densities of the features, required by the Bayesian methodology. The classifiers have been designed and evaluated on a database of 6931 vacation photographs. Our system achieved a classification accuracy of 90.5 % for indoor/outdoor, 95.3 % for city/landscape, 96.6 % for sunset/forest & mountain, and 96 % for forest/mountain classification problems. We further develop a learning method to incrementally train the classifiers as additional data become available. We also show preliminary results for feature reduction using clustering techniques. Our goal is to combine multiple two-class classifiers into a single hierarchical classifier.
A survey of content-based image retrieval with high-level semantics
, 2007
"... In order to improve the retrieval accuracy of content-based image retrieval systems, research focus has been shifted from designing sophisticated low-level feature extraction algorithms to reducing the ‘semantic gap ’ between the visual features and the richness of human semantics. This paper attemp ..."
Abstract
-
Cited by 142 (5 self)
- Add to MetaCart
In order to improve the retrieval accuracy of content-based image retrieval systems, research focus has been shifted from designing sophisticated low-level feature extraction algorithms to reducing the ‘semantic gap ’ between the visual features and the richness of human semantics. This paper attempts to provide a comprehensive survey of the recent technical achievements in high-level semantic-based image retrieval. Major recent publications are included in this survey covering different aspects of the research in this area, including low-level image feature extraction, similarity measurement, and deriving high-level semantic features. We identify five major categories of the state-of-the-art techniques in narrowing down the ‘semantic gap’: (1) using object ontology to define high-level concepts; (2) using machine learning methods to associate low-level features with query concepts; (3) using relevance feedback to learn users’ intention; (4) generating semantic template to support high-level image retrieval; (5) fusing the evidences from HTML text and the visual content of images for WWW image retrieval. In addition, some other related issues such as image test bed and retrieval performance evaluation are also discussed. Finally, based on existing technology and the demand from real-world applications, a few promising future research directions are suggested.
Image Retrieval: Past, Present, And Future
- Journal of Visual Communication and Image Representation
, 1997
"... This paper provides a comprehensive survey of the technical achievements in the research area of Image Retrieval, especially Content-Based Image Retrieval, an area so active and prosperous in the past few years. The survey includes 100+ papers covering the research aspects of image feature represent ..."
Abstract
-
Cited by 102 (4 self)
- Add to MetaCart
This paper provides a comprehensive survey of the technical achievements in the research area of Image Retrieval, especially Content-Based Image Retrieval, an area so active and prosperous in the past few years. The survey includes 100+ papers covering the research aspects of image feature representation and extraction, multi-dimensional indexing, and system design, three of the fundamental bases of Content-Based Image Retrieval. Furthermore, based on the state-of-the-art technology available now and the demand from real-world applications, open research issues are identified, and future promising research directions are suggested. 1. INTRODUCTION Recent years have seen a rapid increase of the size of digital image collections. Everyday, both military and civilian equipment generates giga-bytes of images. Huge amount of information is out there. However, we can not access to or make use of the information unless it is organized so as to allow efficient browsing, searching and retriev...
Manifold-ranking based image retrieval
- In ACM Multimedia
, 2004
"... In this paper, we propose a novel transductive learning framework named manifold-ranking based image retrieval (MRBIR). Given a query image, MRBIR first makes use of a manifold ranking algorithm to explore the relationship among all the data points in the feature space, and then measures relevance b ..."
Abstract
-
Cited by 85 (18 self)
- Add to MetaCart
(Show Context)
In this paper, we propose a novel transductive learning framework named manifold-ranking based image retrieval (MRBIR). Given a query image, MRBIR first makes use of a manifold ranking algorithm to explore the relationship among all the data points in the feature space, and then measures relevance between the query and all the images in the database accordingly, which is different from traditional similarity metrics based on pair-wise distance. In relevance feedback, if only positive examples are available, they are added to the query set to improve the retrieval result; if examples of both labels can be obtained, MRBIR discriminately spreads the ranking scores of positive and negative examples, considering the asymmetry between these two types of images. Furthermore, three active learning methods are incorporated into MRBIR, which select images in each round of relevance feedback according to different principles, aiming to maximally improve the ranking result. Experimental results on a general-purpose image database show that MRBIR attains a significant improvement over existing systems from all aspects.
Learning Similarity Measure for Natural Image Retrieval With Relevance Feedback
- IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2002
"... A new scheme of learning similarity measure is proposed for content-based image retrieval (CBIR). It learns a boundary that separates the images in the database into two clusters. Images inside the boundary are ranked by their Euclidean distances to the query. The scheme is called constrained simila ..."
Abstract
-
Cited by 84 (5 self)
- Add to MetaCart
A new scheme of learning similarity measure is proposed for content-based image retrieval (CBIR). It learns a boundary that separates the images in the database into two clusters. Images inside the boundary are ranked by their Euclidean distances to the query. The scheme is called constrained similarity measure (CSM), which not only takes into consideration the perceptual similarity between images, but also significantly improves the retrieval performance of the Euclidean distance measure. Two techniques, support vector machine (SVM) and AdaBoost from machine learning, are utilized to learn the boundary. They are compared to see their differences in boundary learning. The positive and negative examples used to learn the boundary are provided by the user with relevance feedback. The CSM metric is evaluated in a large database of 10 009 natural images with an accurate ground truth. Experimental results demonstrate the usefulness and effectiveness of the proposed similarity measure for image retrieval.
Support Vector Machine Learning for Image Retrieval
- Proc. IEEE Int. Conf. on Image Processing
, 2001
"... In this paper, a novel method of relevance feedback is presented based on Support Vector Machine learning in the content-based image retrieval system. A SVM classifier can be learned from training data of relevance images and irrelevance images marked by users. Using the classifier, the system can r ..."
Abstract
-
Cited by 75 (4 self)
- Add to MetaCart
(Show Context)
In this paper, a novel method of relevance feedback is presented based on Support Vector Machine learning in the content-based image retrieval system. A SVM classifier can be learned from training data of relevance images and irrelevance images marked by users. Using the classifier, the system can retrieve more images relevant to the query in the database efficiently. Experiments were carried out on a large-size database of 9918 images. It shows that the interactive learning and retrieval process can find correct images increasingly. It also shows the generalization ability of SVM under the condition of limited training samples.
Integrated Browsing and Querying for Image Databases
- IEEE Multimedia
"... This paper describes the architecture and the salient characteristics of the image database system El Nino. The system uses a new interaction model which purports to overcome the problem of the semantic gap. We have a semantic gap when the meaning that the user has in mind for an image is at a highe ..."
Abstract
-
Cited by 72 (3 self)
- Add to MetaCart
(Show Context)
This paper describes the architecture and the salient characteristics of the image database system El Nino. The system uses a new interaction model which purports to overcome the problem of the semantic gap. We have a semantic gap when the meaning that the user has in mind for an image is at a higher semantic level than the features on which the database operates. We argue that we can overcome the problems caused by the semantic gap if we replace the usual query paradigm with a more active exploration process, and develop an interface based on these premises. Other relevant aspects of El Nino, which are discussed in the paper are its distributed architecture composed of partially independent engines connected to a mediator, its attempts to integrate visual and textual queries, and its query algebra approach to the problem of putting together queries from different engines. 1 Introduction What is exactly wrong with existing image databases? Most people would wholeheartedly agree that s...