Results 1  10
of
188
Quantum algorithms for the triangle problem
 PROCEEDINGS OF SODA’05
, 2005
"... We present two new quantum algorithms that either find a triangle (a copy of K3) in an undirected graph G on n nodes, or reject if G is triangle free. The first algorithm uses combinatorial ideas with Grover Search and makes Õ(n10/7) queries. The second algorithm uses Õ(n13/10) queries, and it is b ..."
Abstract

Cited by 94 (10 self)
 Add to MetaCart
(Show Context)
We present two new quantum algorithms that either find a triangle (a copy of K3) in an undirected graph G on n nodes, or reject if G is triangle free. The first algorithm uses combinatorial ideas with Grover Search and makes Õ(n10/7) queries. The second algorithm uses Õ(n13/10) queries, and it is based on a design concept of Ambainis [6] that incorporates the benefits of quantum walks into Grover search [18]. The first algorithm uses only O(log n) qubits in its quantum subroutines, whereas the second one uses O(n) qubits. The Triangle Problem was first treated in [12], where an algorithm with O(n + √ nm) query complexity was presented, where m is the number of edges of G.
The twoeigenvalue problem and density of Jones representation of braid groups
 Comm. Math. Phys
"... ..."
Nonabelian anyons and topological quantum computation
 Reviews of Modern Physics
"... Contents Topological quantum computation has recently emerged as one of the most exciting approaches to constructing a faulttolerant quantum computer. The proposal relies on the existence of topological states of matter whose quasiparticle excitations are neither bosons nor fermions, but are partic ..."
Abstract

Cited by 56 (0 self)
 Add to MetaCart
Contents Topological quantum computation has recently emerged as one of the most exciting approaches to constructing a faulttolerant quantum computer. The proposal relies on the existence of topological states of matter whose quasiparticle excitations are neither bosons nor fermions, but are particles known as NonAbelian anyons, meaning that they obey nonAbelian braiding statistics. Quantum information is stored in states with multiple quasiparticles,
Hidden translation and orbit coset in quantum computing
 IN PROC. 35TH ACM STOC
, 2003
"... We give efficient quantum algorithms for the problems of Hidden Translation and Hidden Subgroup in a large class of nonabelian solvable groups including solvable groups of constant exponent and of constant length derived series. Our algorithms are recursive. For the base case, we solve efficiently ..."
Abstract

Cited by 51 (10 self)
 Add to MetaCart
(Show Context)
We give efficient quantum algorithms for the problems of Hidden Translation and Hidden Subgroup in a large class of nonabelian solvable groups including solvable groups of constant exponent and of constant length derived series. Our algorithms are recursive. For the base case, we solve efficiently Hidden Translation in Z n p, whenever p is a fixed prime. For the induction step, we introduce the problem Orbit Coset generalizing both Hidden Translation and Hidden Subgroup, and prove a powerful selfreducibility result: Orbit Coset in a finite group G is reducible to Orbit Coset in G/N and subgroups of N, for any solvable normal subgroup N of G. Our selfreducibility framework combined with Kuperberg’s subexponential quantum algorithm for solving Hidden Translation in any abelian group, leads to subexponential quantum algorithms for Hidden Translation and Hidden Subgroup in any solvable group.
Limits on the Power of Quantum Statistical ZeroKnowledge
, 2003
"... In this paper we propose a definition for honest verifier quantum statistical zeroknowledge interactive proof systems and study the resulting complexity class, which we denote QSZK ..."
Abstract

Cited by 39 (4 self)
 Add to MetaCart
(Show Context)
In this paper we propose a definition for honest verifier quantum statistical zeroknowledge interactive proof systems and study the resulting complexity class, which we denote QSZK
The Jones polynomial: quantum algorithms and applications in quantum complexity theory
"... We analyze relationships between the Jones polynomial and quantum computation. First, we present two polynomialtime quantum algorithms which give additive approximations of the Jones polynomial, in the sense of Bordewich, Freedman, Lovász and Welsh, of any link obtained from a certain general famil ..."
Abstract

Cited by 37 (6 self)
 Add to MetaCart
(Show Context)
We analyze relationships between the Jones polynomial and quantum computation. First, we present two polynomialtime quantum algorithms which give additive approximations of the Jones polynomial, in the sense of Bordewich, Freedman, Lovász and Welsh, of any link obtained from a certain general family of closures of braids, evaluated at any primitive root of unity. This family encompasses the wellknown plat and trace closures, generalizing results recently obtained by Aharonov, Jones and Landau. We base our algorithms on a local qubit implementation of the unitary JonesWenzl representations of the braid group which makes the underlying representation theory apparent, allowing us to provide an algorithm for approximating the HOMFLYPT twovariable polynomial of the trace closure of a braid at certain pairs of values as well. Next, we provide a selfcontained proof that any quantum computation can be replaced by an additive approximation of the Jones polynomial, evaluated at almost any primitive root of unity. This theorem was originally proved by Freedman, Larsen and Wang in the context of topological quantum computation, and the necessary notion of approximation was later provided by Bordewich et al. Our proof is simpler as it uses a more natural encoding of twoqubit unitaries into the rectangular representation of the eightstrand braid group. We then give QCMAcomplete and PSPACEcomplete problems which are based on braids. Finally, we conclude with direct proofs that evaluating the Jones polynomial of the plat closure at most primitive roots of unity is a #Phard problem, while learning its most significant bit is PPhard, without taking the usual route through the Tutte polynomial and graph coloring. 1
On exotic modular tensor categories
 Commun. Contemp. Math
"... Abstract. We classify all unitary modular tensor categories (UMTCs) of rank ≤ 4. There are a total of 35 UMTCs of rank ≤ 4 up to ribbon tensor equivalence. Since the distinction between the modular Smatrix S and −S has both topological and physical significance, so in our convention there are a tot ..."
Abstract

Cited by 37 (12 self)
 Add to MetaCart
(Show Context)
Abstract. We classify all unitary modular tensor categories (UMTCs) of rank ≤ 4. There are a total of 35 UMTCs of rank ≤ 4 up to ribbon tensor equivalence. Since the distinction between the modular Smatrix S and −S has both topological and physical significance, so in our convention there are a total of 70 UMTCs of rank ≤ 4. In particular, there are two trivial UMTCs with S = (±1). Each such UMTC can be obtained from 10 nontrivial prime UMTCs by direct product, and some symmetry operations. Explicit data of the 10 nontrivial prime UMTCs are given in Section 5. Relevance of UMTCs to topological quantum computation and various conjectures are given in Section 6. 1.
Unpaired majorana fermions in quantum wires
, 2000
"... Certain onedimensional Fermi systems have an energy gap in the bulk spectrum while boundary states are described by one Majorana operator per boundary point. A finite system of length L possesses two ground states with an energy difference proportional to exp(−L/l0) and different fermionic parities ..."
Abstract

Cited by 35 (3 self)
 Add to MetaCart
(Show Context)
Certain onedimensional Fermi systems have an energy gap in the bulk spectrum while boundary states are described by one Majorana operator per boundary point. A finite system of length L possesses two ground states with an energy difference proportional to exp(−L/l0) and different fermionic parities. Such systems can be used as qubits since they are intrinsically immune to decoherence. The property of a system to have boundary Majorana fermions is expressed as a condition on the bulk electron spectrum. The condition is satisfied in the presence of an arbitrary small energy gap induced by proximity of a 3dimensional pwave superconductor, provided that the normal spectrum has an odd number of Fermi points in each half of the Brillouin zone (each spin component counts separately).
The power of unentanglement
, 2008
"... The class QMA(k), introduced by Kobayashi et al., consists of all languages that can be verified using k unentangled quantum proofs. Many of the simplest questions about this class have remained embarrassingly open: for example, can we give any evidence that k quantum proofs are more powerful than o ..."
Abstract

Cited by 27 (3 self)
 Add to MetaCart
The class QMA(k), introduced by Kobayashi et al., consists of all languages that can be verified using k unentangled quantum proofs. Many of the simplest questions about this class have remained embarrassingly open: for example, can we give any evidence that k quantum proofs are more powerful than one? Can we show any upper bound on QMA(k), besides the trivial NEXP? Does QMA(k) = QMA(2) for k ≥ 2? Can QMA(k) protocols be amplified to exponentially small error? In this paper, we make progress on all of the above questions. • We give a protocol by which a verifier can be convinced that a 3Sat formula of size n is satisfiable, with constant soundness, given Õ ( √ n) unentangled quantum witnesses with O (log n) qubits each. Our protocol relies on Dinur’s version of the PCP Theorem and is inherently nonrelativizing. • We show that assuming the famous Additivity Conjecture from quantum information theory, any QMA(2) protocol can be amplified to exponentially small error, and QMA(k) = QMA(2) for all k ≥ 2. • We give evidence that QMA(2) ⊆ PSPACE, by showing that this would follow from “strong amplification ” of QMA(2) protocols. • We prove the nonexistence of “perfect disentanglers” for simulating multiple Merlins with one.
3Local Hamiltonian is QMAcomplete
 Quantum Information and Computation
"... It has been shown by Kitaev that the 5local Hamiltonian problem is QMAcomplete. Here we reduce the locality of the problem by showing that 3local Hamiltonian is already QMAcomplete. 1 ..."
Abstract

Cited by 26 (6 self)
 Add to MetaCart
(Show Context)
It has been shown by Kitaev that the 5local Hamiltonian problem is QMAcomplete. Here we reduce the locality of the problem by showing that 3local Hamiltonian is already QMAcomplete. 1