Results 1  10
of
73
Learning Bayesian belief networks: An approach based on the MDL principle
 Computational Intelligence
, 1994
"... A new approach for learning Bayesian belief networks from raw data is presented. The approach is based on Rissanen's Minimal Description Length (MDL) principle, which is particularly well suited for this task. Our approach does not require any prior assumptions about the distribution being lear ..."
Abstract

Cited by 247 (7 self)
 Add to MetaCart
(Show Context)
A new approach for learning Bayesian belief networks from raw data is presented. The approach is based on Rissanen's Minimal Description Length (MDL) principle, which is particularly well suited for this task. Our approach does not require any prior assumptions about the distribution being learned. In particular, our method can learn unrestricted multiplyconnected belief networks. Furthermore, unlike other approaches our method allows us to tradeo accuracy and complexity in the learned model. This is important since if the learned model is very complex (highly connected) it can be conceptually and computationally intractable. In such a case it would be preferable to use a simpler model even if it is less accurate. The MDL principle o ers a reasoned method for making this tradeo. We also show that our method generalizes previous approaches based on Kullback crossentropy. Experiments have been conducted to demonstrate the feasibility of the approach. Keywords: Knowledge Acquisition � Bayes Nets � Uncertainty Reasoning. 1
A characterization of Markov equivalence classes for acyclic digraphs
, 1995
"... Undirected graphs and acyclic digraphs (ADGs), as well as their mutual extension to chain graphs, are widely used to describe dependencies among variables in multivariate distributions. In particular, the likelihood functions of ADG models admit convenient recursive factorizations that often allow e ..."
Abstract

Cited by 117 (7 self)
 Add to MetaCart
Undirected graphs and acyclic digraphs (ADGs), as well as their mutual extension to chain graphs, are widely used to describe dependencies among variables in multivariate distributions. In particular, the likelihood functions of ADG models admit convenient recursive factorizations that often allow explicit maximum likelihood estimates and that are well suited to building Bayesian networks for expert systems. Whereas the undirected graph associated with a dependence model is uniquely determined, there may, however, be many ADGs that determine the same dependence ( = Markov) model. Thus, the family of all ADGs with a given set of vertices is naturally partitioned into Markovequivalence classes, each class being associated with a unique statistical model. Statistical procedures, such as model selection or model averaging, that fail to take into account these equivalence classes, may incur substantial computational or other inefficiencies. Here it is shown that each Markovequivalence class is uniquely determined by a single chain graph, the essential graph, that is itself simultaneously Markov equivalent to all ADGs in the equivalence class. Essential graphs are characterized, a polynomialtime algorithm for their construction is given, and their applications to model selection and other statistical
Learning Bayesian Networks by Genetic Algorithms. A case study in the prediction of survival in malignant skin melanoma
, 1997
"... In this work we introduce a methodology based on Genetic Algorithms for the automatic induction of Bayesian Networks from a file containing cases and variables related to the problem. The methodology is applied to the problem of predicting survival of people after one, three and five years of being ..."
Abstract

Cited by 98 (11 self)
 Add to MetaCart
In this work we introduce a methodology based on Genetic Algorithms for the automatic induction of Bayesian Networks from a file containing cases and variables related to the problem. The methodology is applied to the problem of predicting survival of people after one, three and five years of being diagnosed as having malignant skin melanoma. The accuracy of the obtained model, measured in terms of the percentage of wellclassified subjects, is compared to that obtained by the called NaiveBayes. In both cases, the estimation of the model accuracy is obtained from the 10fold crossvalidation method. 1. Introduction Expert systems, one of the most developed areas in the field of Artificial Intelligence, are computer programs designed to help or replace humans beings in tasks in which the human experience and human knowledge are scarce and unreliable. Although, there are domains in which the tasks can be specifed by logic rules, other domains are characterized by an uncertainty inherent...
Learning Probabilistic Networks
 THE KNOWLEDGE ENGINEERING REVIEW
, 1998
"... A probabilistic network is a graphical model that encodes probabilistic relationships between variables of interest. Such a model records qualitative influences between variables in addition to the numerical parameters of the probability distribution. As such it provides an ideal form for combini ..."
Abstract

Cited by 42 (2 self)
 Add to MetaCart
A probabilistic network is a graphical model that encodes probabilistic relationships between variables of interest. Such a model records qualitative influences between variables in addition to the numerical parameters of the probability distribution. As such it provides an ideal form for combining prior knowledge, which might be limited solely to experience of the influences between some of the variables of interest, and data. In this paper, we first show how data can be used to revise initial estimates of the parameters of a model. We then progress to showing how the structure of the model can be revised as data is obtained. Techniques for learning with incomplete data are also covered.
Probabilistic Network Construction Using the Minimum Description Length Principle
, 1994
"... Probabilistic networks can be constructed from a database of cases by selecting a network that has highest quality with respect to this database according to a given measure. A new measure is presented for this purpose based on a minimum description length (MDL) approach. This measure is compared wi ..."
Abstract

Cited by 40 (1 self)
 Add to MetaCart
(Show Context)
Probabilistic networks can be constructed from a database of cases by selecting a network that has highest quality with respect to this database according to a given measure. A new measure is presented for this purpose based on a minimum description length (MDL) approach. This measure is compared with a commonly used measure based on a Bayesian approach both from a theoretical and an experimental point of view. We show that the two measures have the same properties for infinite large databases. For smaller databases, however, the MDL measure assigns equal quality to networks that represent the same set of independencies while the Bayesian measure does not. Preliminary test results suggest that an algorithm for learning probabilistic networks using the minimum description length approach performs comparably to a learning algorithm using the Bayesian approach. However, the former is slightly faster.
Penalized Likelihood Methods for Estimation of sparse high dimensional directed acyclic graphs
, 2010
"... Directed acyclic graphs are commonly used to represent causal relationships among random variables in graphical models. Applications of these models arise in the study of physical, as well as biological systems, where directed edges between nodes represent the influence of components of the system o ..."
Abstract

Cited by 20 (8 self)
 Add to MetaCart
Directed acyclic graphs are commonly used to represent causal relationships among random variables in graphical models. Applications of these models arise in the study of physical, as well as biological systems, where directed edges between nodes represent the influence of components of the system on each other. Estimation of directed graphs from observational data is computationally NPhard. In addition, directed graphs with the same structure may be indistinguishable based on observations alone. When the nodes exhibit a natural ordering, the problem of estimating directed graphs reduces to the problem of estimating the structure of the network. In this paper, we propose an efficient penalized likelihood method for estimation of the adjacency matrix of directed acyclic graphs, when variables inherit a natural ordering. We study variable selection consistency of both the lasso, as well as the adaptive lasso penalties in high dimensional sparse settings, and propose an errorbased choice for selecting the tuning parameter. We show that although the lasso is only variable selection consistent under stringent conditions, the adaptive lasso can consistently estimate the true graph under the usual regularity assumptions. Simulation studies indicate that the correct ordering of the variables becomes less critical in estimation of high dimensional sparse networks.
The Posterior Probability of Bayes Nets with Strong Dependences
 Soft Computing
, 1999
"... Stochastic independence is an idealized relationship located at one end of a continuum of values measuring degrees of dependence. Modeling real world systems, we are often not interested in the distinction between exact independence and any degree of dependence, but between weak ignorable and strong ..."
Abstract

Cited by 17 (1 self)
 Add to MetaCart
(Show Context)
Stochastic independence is an idealized relationship located at one end of a continuum of values measuring degrees of dependence. Modeling real world systems, we are often not interested in the distinction between exact independence and any degree of dependence, but between weak ignorable and strong substantial dependence. Good models map significant deviance from independence and neglect approximate independence or dependence weaker than a noise threshold. This intuition is applied to learning the structure of Bayes nets from data. We determine the conditional posterior probabilities of structures given that the degree of dependence at each of their nodes exceeds a critical noise level. Deviance from independence is measured by mutual information. Arc probabilities are determined by the amount of mutual information the neighbors contribute to a node, is greater than a critical minimum deviance from independence. A Ø 2 approximation for the probability density function of mutual info...
Predicting the Survival in Malignant Skin Melanoma Using Bayesian Networks Automatically Induced by Genetic Algorithms  An Empirical Comparision Between Different Approaches
 Artificial Intelligence in Medicine
, 1998
"... In this work we introduce a methodology based on Genetic Algorithms for the automatic induction of Bayesian Networks from a file containing cases and variables related to the problem. The structure is learned by applying three different methods: The Cooper and Herskovits metric for a general Bayesia ..."
Abstract

Cited by 17 (5 self)
 Add to MetaCart
In this work we introduce a methodology based on Genetic Algorithms for the automatic induction of Bayesian Networks from a file containing cases and variables related to the problem. The structure is learned by applying three different methods: The Cooper and Herskovits metric for a general Bayesian Network, the Markov Blanket approach and the relaxed Markov Blanket method. The methodologies are applied to the problem of predicting survival of people after one, three and five years of being diagnosed as having malignant skin melanoma. The accuracy of the obtained models, measured in terms of the percentage of wellclassified subjects, is compared to that obtained by the socalled NaiveBayes. In the four approaches, the estimation of the model accuracy is obtained from the 10fold crossvalidation method. Keywords Bayesian Network, Genetic Algorithm, Structure Learning, Model Search, 10fold Crossvalidation 1. Introduction Expert systems, one of the most developed areas in the fiel...
BNT structure learning package: documentation and experiments
 Technical Report FRE CNRS 2645). Laboratoire PSI, Universitè et INSA de Rouen
, 2004
"... Bayesian networks are a formalism for probabilistic reasonning that is more and more used for classification task in datamining. In some situations, the network structure is given by an expert, otherwise, retrieving it from a database is a NPhard problem, notably because of the search space comple ..."
Abstract

Cited by 16 (1 self)
 Add to MetaCart
Bayesian networks are a formalism for probabilistic reasonning that is more and more used for classification task in datamining. In some situations, the network structure is given by an expert, otherwise, retrieving it from a database is a NPhard problem, notably because of the search space complexity. In the last decade, lot of methods have been introduced to learn the network structure automatically, by simplifying the search space (augmented naive bayes, K2) or by using an heuristic in this search space (greedy search). Most of these methods deal with completely observed data, but some others can deal with incomplete data (SEM, MWSTEM). The Bayes Net Toolbox introduced by [Murphy, 2001a] for Matlab allows us using Bayesian Networks or learning them. But this toolbox is not ’state of the art ’ if we want to perform a Structural Learning, that’s why we propose this package.