Results 1  10
of
249
Learning Bayesian Networks is NPHard
, 1994
"... Algorithms for learning Bayesian networks from data have two components: a scoring metric and a search procedure. The scoring metric computes a score reflecting the goodnessoffit of the structure to the data. The search procedure tries to identify network structures with high scores. Heckerman et ..."
Abstract

Cited by 194 (2 self)
 Add to MetaCart
(Show Context)
Algorithms for learning Bayesian networks from data have two components: a scoring metric and a search procedure. The scoring metric computes a score reflecting the goodnessoffit of the structure to the data. The search procedure tries to identify network structures with high scores. Heckerman et al. (1994) introduced a Bayesian metric, called the BDe metric, that computes the relative posterior probability of a network structure given data. They show that the metric has a property desireable for inferring causal structure from data. In this paper, we show that the problem of deciding whether there is a Bayesian networkamong those where each node has at most k parentsthat has a relative posterior probability greater than a given constant is NPcomplete, when the BDe metric is used. 1 Introduction Recently, many researchers have begun to investigate methods for learning Bayesian networks, including Bayesian methods [Cooper and Herskovits, 1991, Buntine, 1991, York 1992, Spiegel...
The maxmin hillclimbing Bayesian network structure learning algorithm
, 2006
"... We present a new algorithm for Bayesian network structure learning, called MaxMin HillClimbing (MMHC). The algorithm combines ideas from local learning, constraintbased, and searchandscore techniques in a principled and effective way. It first reconstructs the skeleton of a Bayesian network a ..."
Abstract

Cited by 156 (8 self)
 Add to MetaCart
We present a new algorithm for Bayesian network structure learning, called MaxMin HillClimbing (MMHC). The algorithm combines ideas from local learning, constraintbased, and searchandscore techniques in a principled and effective way. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesianscoring greedy hillclimbing search to orient the edges. In our extensive empirical evaluation MMHC outperforms on average and in terms of various metrics several prototypical and stateoftheart
Estimating highdimensional directed acyclic graphs with the PCalgorithm
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2007
"... We consider the PCalgorithm (Spirtes et al., 2000) for estimating the skeleton and equivalence class of a very highdimensional directed acyclic graph (DAG) with corresponding Gaussian distribution. The PCalgorithm is computationally feasible and often very fast for sparse problems with many nodes ..."
Abstract

Cited by 116 (7 self)
 Add to MetaCart
We consider the PCalgorithm (Spirtes et al., 2000) for estimating the skeleton and equivalence class of a very highdimensional directed acyclic graph (DAG) with corresponding Gaussian distribution. The PCalgorithm is computationally feasible and often very fast for sparse problems with many nodes (variables), and it has the attractive property to automatically achieve high computational efficiency as a function of sparseness of the true underlying DAG. We prove uniform consistency of the algorithm for very highdimensional, sparse DAGs where the number of nodes is allowed to quickly grow with sample size n, as fast as O(n a) for any 0 < a < ∞. The sparseness assumption is rather minimal requiring only that the neighborhoods in the DAG are of lower order than sample size n. We also demonstrate the PCalgorithm for simulated data.
Adaptive forwardbackward greedy algorithm for learning sparse representations
 IEEE Trans. Inform. Theory
, 2011
"... Consider linear prediction models where the target function is a sparse linear combination of a set of basis functions. We are interested in the problem of identifying those basis functions with nonzero coefficients and reconstructing the target function from noisy observations. Two heuristics that ..."
Abstract

Cited by 101 (9 self)
 Add to MetaCart
(Show Context)
Consider linear prediction models where the target function is a sparse linear combination of a set of basis functions. We are interested in the problem of identifying those basis functions with nonzero coefficients and reconstructing the target function from noisy observations. Two heuristics that are widely used in practice are forward and backward greedy algorithms. First, we show that neither idea is adequate. Second, we propose a novel combination that is based on the forward greedy algorithm but takes backward steps adaptively whenever beneficial. We prove strong theoretical results showing that this procedure is effective in learning sparse representations. Experimental results support our theory. 1
Learning the structure of linear latent variable models
 Journal of Machine Learning Research
, 2006
"... We describe anytime search procedures that (1) find disjoint subsets of recorded variables for which the members of each subset are dseparated by a single common unrecorded cause, if such exists; (2) return information about the causal relations among the latent factors so identified. We prove the ..."
Abstract

Cited by 58 (17 self)
 Add to MetaCart
We describe anytime search procedures that (1) find disjoint subsets of recorded variables for which the members of each subset are dseparated by a single common unrecorded cause, if such exists; (2) return information about the causal relations among the latent factors so identified. We prove the procedure is pointwise consistent assuming (a) the causal relations can be represented by a directed acyclic graph (DAG) satisfying the Markov Assumption and the Faithfulness Assumption; (b) unrecorded variables are not caused by recorded variables; and (c) dependencies are linear. We compare the procedure with standard approaches over a variety of simulated structures and sample sizes, and illustrate its practical value with brief studies of social science data sets. Finally, we
Structure learning in random fields for heart motion abnormality detection
 In CVPR
, 2008
"... Coronary Heart Disease can be diagnosed by assessing the regional motion of the heart walls in ultrasound images of the left ventricle. Even for experts, ultrasound images are difficult to interpret leading to high intraobserver variability. Previous work indicates that in order to approach this pr ..."
Abstract

Cited by 56 (8 self)
 Add to MetaCart
(Show Context)
Coronary Heart Disease can be diagnosed by assessing the regional motion of the heart walls in ultrasound images of the left ventricle. Even for experts, ultrasound images are difficult to interpret leading to high intraobserver variability. Previous work indicates that in order to approach this problem, the interactions between the different heart regions and their overall influence on the clinical condition of the heart need to be considered. To do this, we propose a method for jointly learning the structure and parameters of conditional random fields, formulating these tasks as a convex optimization problem. We consider blockL1 regularization for each set of features associated with an edge, and formalize an efficient projection method to find the globally optimal penalized maximum likelihood solution. We perform extensive numerical experiments comparing the presented method with related methods that approach the structure learning problem differently. We verify the robustness of our method on echocardiograms collected in routine clinical practice at one hospital. 1.
Structure Learning of Bayesian Networks using Constraints
"... This paper addresses exact learning of Bayesian network structure from data and expert’s knowledge based on score functions that are decomposable. First, it describes useful properties that strongly reduce the time and memory costs of many known methods such as hillclimbing, dynamic programming and ..."
Abstract

Cited by 51 (6 self)
 Add to MetaCart
(Show Context)
This paper addresses exact learning of Bayesian network structure from data and expert’s knowledge based on score functions that are decomposable. First, it describes useful properties that strongly reduce the time and memory costs of many known methods such as hillclimbing, dynamic programming and sampling variable orderings. Secondly, a branch and bound algorithm is presented that integrates parameter and structural constraints with data in a way to guarantee global optimality with respect to the score function. It is an anytime procedure because, if stopped, it provides the best current solution and an estimation about how far it is from the global solution. We show empirically the advantages of the properties and the constraints, and the applicability of the algorithm to large data sets (up to one hundred variables) that cannot be handled by other current methods (limited to around 30 variables). 1.
Improved learning of Bayesian networks
 Proc. of the Conf. on Uncertainty in Artificial Intelligence
, 2001
"... Two or more Bayesian network structures are Markov equivalent when the corresponding acyclic digraphs encode the same set of conditional independencies. Therefore, the search space of Bayesian network structures may be organized in equivalence classes, where each of them represents a different set o ..."
Abstract

Cited by 40 (5 self)
 Add to MetaCart
Two or more Bayesian network structures are Markov equivalent when the corresponding acyclic digraphs encode the same set of conditional independencies. Therefore, the search space of Bayesian network structures may be organized in equivalence classes, where each of them represents a different set of conditional independencies. The collection of sets of conditional independencies obeys a partial order, the socalled “inclusion order.” This paper discusses in depth the role that the inclusion order plays in learning the structure of Bayesian networks. In particular, this role involves the way a learning algorithm traverses the search space. We introduce a condition for traversal operators, the inclusion boundary condition, which, when it is satisfied, guarantees that the search strategy can avoid local maxima. This is proved under the assumptions that the data is sampled from a probability distribution which is faithful to an acyclic digraph, and the length of the sample is unbounded. The previous discussion leads to the design of a new traversal operator and two new learning algorithms in the context of heuristic search and the Markov Chain Monte Carlo method. We carry out a set of experiments with synthetic and realworld data that show empirically the benefit of striving for the inclusion order when learning Bayesian networks from data.
Learning causal Bayesian network structures from experimental data
, 2006
"... We propose a method for the computational inference of directed acyclic graphical structures given data from experimental interventions. Orderspace MCMC, equienergy sampling, importance weighting and streambased computation are combined to create a fast algorithm for learning causal Bayesian ne ..."
Abstract

Cited by 37 (1 self)
 Add to MetaCart
(Show Context)
We propose a method for the computational inference of directed acyclic graphical structures given data from experimental interventions. Orderspace MCMC, equienergy sampling, importance weighting and streambased computation are combined to create a fast algorithm for learning causal Bayesian network structures.
Estimating highdimensional intervention effects from observation data
 THE ANN OF STAT
, 2009
"... We assume that we have observational data generated from an unknown underlying directed acyclic graph (DAG) model. A DAG is typically not identifiable from observational data, but it is possible to consistently estimate the equivalence class of a DAG. Moreover, for any given DAG, causal effects can ..."
Abstract

Cited by 36 (7 self)
 Add to MetaCart
(Show Context)
We assume that we have observational data generated from an unknown underlying directed acyclic graph (DAG) model. A DAG is typically not identifiable from observational data, but it is possible to consistently estimate the equivalence class of a DAG. Moreover, for any given DAG, causal effects can be estimated using intervention calculus. In this paper, we combine these two parts. For each DAG in the estimated equivalence class, we use intervention calculus to estimate the causal effects of the covariates on the response. This yields a collection of estimated causal effects for each covariate. We show that the distinct values in this set can be consistently estimated by an algorithm that uses only local information of the graph. This local approach is computationally fast and feasible in highdimensional problems. We propose to use summary measures of the set of possible causal effects to determine variable importance. In particular, we use the minimum absolute value of this set, since that is a lower bound on the size of the causal effect. We demonstrate the merits of our methods in a simulation study and on a data set about riboflavin production.