Results 1 - 10
of
1,555
A Maximum Entropy approach to Natural Language Processing
- COMPUTATIONAL LINGUISTICS
, 1996
"... The concept of maximum entropy can be traced back along multiple threads to Biblical times. Only recently, however, have computers become powerful enough to permit the widescale application of this concept to real world problems in statistical estimation and pattern recognition. In this paper we des ..."
Abstract
-
Cited by 1366 (5 self)
- Add to MetaCart
The concept of maximum entropy can be traced back along multiple threads to Biblical times. Only recently, however, have computers become powerful enough to permit the widescale application of this concept to real world problems in statistical estimation and pattern recognition. In this paper we describe a method for statistical modeling based on maximum entropy. We present a maximum-likelihood approach for automatically constructing maximum entropy models and describe how to implement this approach efficiently, using as examples several problems in natural language processing.
Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary
, 2002
"... We describe a model of object recognition as machine translation. In this model, ..."
Abstract
-
Cited by 613 (34 self)
- Add to MetaCart
We describe a model of object recognition as machine translation. In this model,
Improved Statistical Alignment Models
- In Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics
, 2000
"... In this paper, we present and compare various single-word based alignment models for statistical machine translation. We discuss the five IBM alignment models, the Hidden-Markov alignment model, smoothing techniques and various modifications. ..."
Abstract
-
Cited by 607 (12 self)
- Add to MetaCart
(Show Context)
In this paper, we present and compare various single-word based alignment models for statistical machine translation. We discuss the five IBM alignment models, the Hidden-Markov alignment model, smoothing techniques and various modifications.
Stochastic Inversion Transduction Grammars and Bilingual Parsing of Parallel Corpora
, 1997
"... ..."
Discriminative Training and Maximum Entropy Models for Statistical Machine Translation
, 2002
"... We present a framework for statistical machine translation of natural languages based on direct maximum entropy models, which contains the widely used source -channel approach as a special case. All knowledge sources are treated as feature functions, which depend on the source language senten ..."
Abstract
-
Cited by 508 (30 self)
- Add to MetaCart
(Show Context)
We present a framework for statistical machine translation of natural languages based on direct maximum entropy models, which contains the widely used source -channel approach as a special case. All knowledge sources are treated as feature functions, which depend on the source language sentence, the target language sentence and possible hidden variables.
A hierarchical phrase-based model for statistical machine translation
- IN ACL
, 2005
"... We present a statistical phrase-based translation model that uses hierarchical phrases— phrases that contain subphrases. The model is formally a synchronous context-free grammar but is learned from a bitext without any syntactic information. Thus it can be seen as a shift to the formal machinery of ..."
Abstract
-
Cited by 491 (12 self)
- Add to MetaCart
(Show Context)
We present a statistical phrase-based translation model that uses hierarchical phrases— phrases that contain subphrases. The model is formally a synchronous context-free grammar but is learned from a bitext without any syntactic information. Thus it can be seen as a shift to the formal machinery of syntaxbased translation systems without any linguistic commitment. In our experiments using BLEU as a metric, the hierarchical phrasebased model achieves a relative improvement of 7.5 % over Pharaoh, a state-of-the-art phrase-based system.
Time-Based Language Models
, 2003
"... We explore the relationship between time and relevance using TREC ad-hoc queries. A type of query is identified that favors very recent documents. We propose a time-based language model approach to retrieval for these queries. We show how time can be incorporated into both query-likelihood models an ..."
Abstract
-
Cited by 440 (36 self)
- Add to MetaCart
(Show Context)
We explore the relationship between time and relevance using TREC ad-hoc queries. A type of query is identified that favors very recent documents. We propose a time-based language model approach to retrieval for these queries. We show how time can be incorporated into both query-likelihood models and relevance models. We carried out experiments to compare time-based language models to heuristic techniques for incorporating document recency in the ranking. Our results show that time-based models perform as well as or better than the best of the heuristic techniques.
Automatic Image Annotation and Retrieval using Cross-Media Relevance Models
, 2003
"... Libraries have traditionally used manual image annotation for indexing and then later retrieving their image collections. However, manual image annotation is an expensive and labor intensive procedure and hence there has been great interest in coming up with automatic ways to retrieve images based o ..."
Abstract
-
Cited by 431 (14 self)
- Add to MetaCart
(Show Context)
Libraries have traditionally used manual image annotation for indexing and then later retrieving their image collections. However, manual image annotation is an expensive and labor intensive procedure and hence there has been great interest in coming up with automatic ways to retrieve images based on content. Here, we propose an automatic approach to annotating and retrieving images based on a training set of images. We assume that regions in an image can be described using a small vocabulary of blobs. Blobs are generated from image features using clustering. Given a training set of images with annotations, we show that probabilistic models allow us to predict the probability of generating a word given the blobs in an image. This may be used to automatically annotate and retrieve images given a word as a query. We show that relevance models. allow us to derive these probabilities in a natural way. Experiments show that the annotation performance of this cross-media rele- vance model is almost six times as good (in terms of mean precision) than a model based on word-blob co-occurrence model and twice as good as a state of the art model derived from machine translation. Our approach shows the usefulness of using formal information retrieval models for the task of image annotation and retrieval.
Information Retrieval as Statistical Translation
"... We propose a new probabilistic approach to information retrieval based upon the ideas and methods of statistical machine translation. The central ingredient in this approach is a statistical model of how a user might distill or "translate" a given document into a query. To assess the rele ..."
Abstract
-
Cited by 313 (6 self)
- Add to MetaCart
(Show Context)
We propose a new probabilistic approach to information retrieval based upon the ideas and methods of statistical machine translation. The central ingredient in this approach is a statistical model of how a user might distill or "translate" a given document into a query. To assess the relevance of a document to a user's query, we estimate the probability that the query would have been generated as a translation of the document, and factor in the user's general preferences in the form of a prior distribution over documents. We propose a simple, well motivated model of the document-to-query translation process, and describe an algorithm for learning the parameters of this model in an unsupervised manner from a collection of documents. As we show, one can view this approach as a generalization and justification of the "language modeling" strategy recently proposed by Ponte and Croft. In a series of experiments on TREC data, a simple translation-based retrieval system performs well in compari...
Extracting paraphrases from a parallel corpus
- In Proc. of the ACL/EACL
, 2001
"... While paraphrasing is critical both for interpretation and generation of natural language, current systems use manual or semi-automatic methods to collect paraphrases. We present an unsupervised learning algorithm for identification of paraphrases from a corpus of multiple English translations of th ..."
Abstract
-
Cited by 252 (6 self)
- Add to MetaCart
(Show Context)
While paraphrasing is critical both for interpretation and generation of natural language, current systems use manual or semi-automatic methods to collect paraphrases. We present an unsupervised learning algorithm for identification of paraphrases from a corpus of multiple English translations of the same source text. Our approach yields phrasal and single word lexical paraphrases as well as syntactic paraphrases. 1