Results 1 - 10
of
228
Movement-assisted sensor deployment
, 2006
"... Adequate coverage is very important for sensor networks to fulfill the issued sensing tasks. In many working environments, it is necessary to make use of mobile sensors, which can move to the correct places to provide the required coverage. In this paper, we study the problem of placing mobile senso ..."
Abstract
-
Cited by 252 (12 self)
- Add to MetaCart
Adequate coverage is very important for sensor networks to fulfill the issued sensing tasks. In many working environments, it is necessary to make use of mobile sensors, which can move to the correct places to provide the required coverage. In this paper, we study the problem of placing mobile sensors to get high coverage. Based on Voronoi diagrams, we design two sets of distributed protocols for controlling the movement of sensors, one favoring communication and one favoring movement. In each set of protocols, we use Voronoi diagrams to detect coverage holes and use one of three algorithms to calculate the target locations of sensors if holes exist. Simulation results show the effectiveness of our protocols and give insight on choosing protocols and calculation algorithms under different application requirements and working conditions.
Robomote: Enabling mobility in sensor networks
- In IEEE/ACM Fourth International Conference on Information Processing in Sensor Networks (IPSN-SPOTS
, 2005
"... Severe energy limitations, and a paucity of computation pose a set of difficult design challenges for sensor networks. Recent progress in two seemingly disparate research areas namely, distributed robotics and low power embedded systems has led to the creation of mobile (or robotic) sensor networks. ..."
Abstract
-
Cited by 102 (1 self)
- Add to MetaCart
(Show Context)
Severe energy limitations, and a paucity of computation pose a set of difficult design challenges for sensor networks. Recent progress in two seemingly disparate research areas namely, distributed robotics and low power embedded systems has led to the creation of mobile (or robotic) sensor networks. Autonomous node mobility brings with it its own challenges, but also alleviates some of the traditional problems associated with static sensor networks. We illustrate this by presenting the design of the robomote, a robot platform that functions as a single mobile node in a mobile sensor network. We briefly describe two case studies where the robomote has been used for table top experiments with a mobile sensor network. 1.
Sensor relocation in mobile sensor networks
- In Proc. of IEEE INFOCOM
, 2005
"... Abstract — Recently there has been a great deal of research on using mobility in sensor networks to assist in the initial deployment of nodes. Mobile sensors are useful in this environment because they can move to locations that meet sensing coverage requirements. This paper explores the motion capa ..."
Abstract
-
Cited by 98 (5 self)
- Add to MetaCart
(Show Context)
Abstract — Recently there has been a great deal of research on using mobility in sensor networks to assist in the initial deployment of nodes. Mobile sensors are useful in this environment because they can move to locations that meet sensing coverage requirements. This paper explores the motion capability to relocate sensors to deal with sensor failure or respond to new events. We define the problem of sensor relocation and propose a two-phase sensor relocation solution: redundant sensors are first identified and then relocated to the target location. We propose a Grid-Quorum solution to quickly locate the closest redundant sensor with low message complexity, and propose to use cascaded movement to relocate the redundant sensor in a timely, efficient and balanced way. Simulation results verify that the proposed solution outperforms others in terms of relocation time, total energy consumption, and minimum remaining energy. I.
Spreading Out: A Local Approach to Multi-robot Coverage
- in Proc. of 6th International Symposium on Distributed Autonomous Robotic Systems
, 2002
"... The problem of coverage without a priori global information about the environment is a key element of the general exploration problem. Applications vary from exploration of the Mars surface to the urban search and rescue (USAR) domain, where neither a map, nor a Global Positioning System (GPS) are a ..."
Abstract
-
Cited by 93 (9 self)
- Add to MetaCart
(Show Context)
The problem of coverage without a priori global information about the environment is a key element of the general exploration problem. Applications vary from exploration of the Mars surface to the urban search and rescue (USAR) domain, where neither a map, nor a Global Positioning System (GPS) are available. We propose two algorithms for solving the 2D coverage problem using multiple mobile robots. The basic premise of both algorithms is that local dispersion is a natural way to achieve global coverage. Thus, both algorithms are based on local, mutually dispersive interaction between robots when they are within sensing range of each other. Simulations show that the proposed algorithms solve the problem to within 5-7% of the (manually generated) optimal solutions. We show that the nature of the interaction needed between robots is very simple; indeed anonymous interaction slightly outperforms a more complicated local technique based on ephemeral identification.
Energy-Efficient Deployment of Intelligent Mobile Sensor Networks
- and Cybernetics - Part A: Systems and Humans
, 2005
"... Abstract—Many visions of the future include people immersed in an environment surrounded by sensors and intelligent devices, which use smart infrastructures to improve the quality of life and safety in emergency situations. Ubiquitous communication enables these sensors or intelligent devices to com ..."
Abstract
-
Cited by 86 (0 self)
- Add to MetaCart
(Show Context)
Abstract—Many visions of the future include people immersed in an environment surrounded by sensors and intelligent devices, which use smart infrastructures to improve the quality of life and safety in emergency situations. Ubiquitous communication enables these sensors or intelligent devices to communicate with each other and the user or a decision maker by means of ad hoc wireless networking. Organization and optimization of network resources are essential to provide ubiquitous communication for a longer duration in large-scale networks and are helpful to migrate intelligence from higher and remote levels to lower and local levels. In this paper, distributed energy-efficient deployment algorithms for mobile sensors and intelligent devices that form an Ambient Intelligent network are proposed. These algorithms employ a synergistic combination of cluster structuring and a peer-to-peer deployment scheme. An energy-efficient deployment algorithm based on Voronoi diagrams is also proposed here. Performance of our algorithms is evaluated in terms of coverage, uniformity, and time and distance traveled until the algorithm converges. Our algorithms are shown to exhibit excellent performance. Index Terms—Ambient intelligence, deployment, distributed algorithms, energy-efficiency, mobile wireless networks, wireless sensor networks (WSN). I.
SMART: A Scan-Based Movement-Assisted Sensor Deployment Method in Wireless Sensor Networks
- In Proc. of IEEE INFOCOM
, 2005
"... Abstract—The efficiency of sensor networks depends on the coverage of the monitoring area. Although, in general, a sufficient number of sensors are used to ensure a certain degree of redundancy in coverage, a good sensor deployment is still necessary to balance the workload of sensors. In a sensor n ..."
Abstract
-
Cited by 68 (4 self)
- Add to MetaCart
(Show Context)
Abstract—The efficiency of sensor networks depends on the coverage of the monitoring area. Although, in general, a sufficient number of sensors are used to ensure a certain degree of redundancy in coverage, a good sensor deployment is still necessary to balance the workload of sensors. In a sensor network with locomotion facilities, sensors can move around to self-deploy. The movement-assisted sensor deployment deals with moving sensors from an initial unbalanced state to a balanced state. Therefore, various optimization problems can be defined to minimize different parameters, including total moving distance, total number of moves, communication/computation cost, and convergence rate. In this paper, we first propose a Hungarian-algorithm-based optimal solution, which is centralized. Then, a localized Scan-based Movement-Assisted sensoR deploymenT method (SMART) and its several variations that use scan and dimension exchange to achieve a balanced state are proposed. An extended SMART is developed to address a unique problem called communication holes in sensor networks. Extensive simulations have been done to verify the effectiveness of the proposed scheme.
Development environments for autonomous mobile robots: A survey
- Autonomous Robots
, 2007
"... Robotic Development Environments (RDEs) have come to play an increasingly important role in robotics research in general, and for the development of architectures for mobile robots in particular. Yet, no systematic evaluation of available RDEs has been performed; establishing a comprehensive list of ..."
Abstract
-
Cited by 65 (1 self)
- Add to MetaCart
(Show Context)
Robotic Development Environments (RDEs) have come to play an increasingly important role in robotics research in general, and for the development of architectures for mobile robots in particular. Yet, no systematic evaluation of available RDEs has been performed; establishing a comprehensive list of evaluation criteria targeted at robotics applications is desirable that can subsequently be used to compare their strengths and weaknesses. Moreover, there are no practical evaluations of the usability and impact of a large selection of RDEs that provides researchers with the information necessary to select an RDE most suited to their needs, nor identifies trends in RDE research that suggest directions for future RDE development. This survey addresses the above by selecting and describing nine open source, freely available RDEs for mobile robots, evaluating and comparing them from various points of view. First, based on previous work concerning agent systems, a conceptual framework of four broad categories is established, encompassing the characteristics and capabilities that an RDE supports. Then, a practical evaluation of RDE usability in designing, implementing, and executing robot architectures is presented. Finally, the impact of specific RDEs on the field of robotics is addressed by providing a list of published applications and research projects that give concrete examples of areas in which systems have been used. The comprehensive evaluation and comparison of the nine RDEs concludes with suggestions of how to use the results of this survey and a brief discussion of future trends in RDE design. 1
Sampling Based Sensor-Network Deployment
"... In this paper, we consider the problem of placing networked sensors in a way that guarantees coverage and connectivity. We focus on sampling based deployment and present algorithms that guarantee coverage and connectivity with a small number of sensors. We consider two different scenarios based on t ..."
Abstract
-
Cited by 40 (0 self)
- Add to MetaCart
In this paper, we consider the problem of placing networked sensors in a way that guarantees coverage and connectivity. We focus on sampling based deployment and present algorithms that guarantee coverage and connectivity with a small number of sensors. We consider two different scenarios based on the flexibility of deployment. If deployment has to be accomplished in one step, like airborne deployment, then the main question becomes how many sensors are needed. If deployment can be implemented in multiple steps, then awareness of coverage and connectivity can be updated. For this case, we present incremental deployment algorithms which consider the current placement to adjust the sampling domain. The algorithms are simple, easy to implement, and require a small number of sensors. We believe the concepts and algorithms presented in this paper will provide a unifying framework for existing and future deployment algorithms which consider many practical issues not considered in the present work.
The coverage problem in three-dimensional wireless sensor networks
- In IEEE Globecom
, 2004
"... Abstract — One of the fundamental issues in sensor networks is the coverage problem, which reflects how well a sensor network is monitored or tracked by sensors. In this paper, we formulate this problem as a decision problem, whose goal is to determine whether every point in the service area of the ..."
Abstract
-
Cited by 39 (7 self)
- Add to MetaCart
(Show Context)
Abstract — One of the fundamental issues in sensor networks is the coverage problem, which reflects how well a sensor network is monitored or tracked by sensors. In this paper, we formulate this problem as a decision problem, whose goal is to determine whether every point in the service area of the sensor network is covered by at least α sensors, where α is a given parameter and the sensing regions of sensors are modeled by balls (not necessarily of the same radius). This problem in a 2D space is solved in [1] with an efficient polynomial-time algorithm (in terms of the number of sensors). In this paper, we show that tackling this problem in a 3D space is still feasible within polynomial time. The proposed solution can be easily translated into an efficient polynomial-time distributed protocol. I.