Results 1 
3 of
3
Wavelet shrinkage: asymptopia
 Journal of the Royal Statistical Society, Ser. B
, 1995
"... Considerable e ort has been directed recently to develop asymptotically minimax methods in problems of recovering in nitedimensional objects (curves, densities, spectral densities, images) from noisy data. A rich and complex body of work has evolved, with nearly or exactly minimax estimators bein ..."
Abstract

Cited by 297 (36 self)
 Add to MetaCart
Considerable e ort has been directed recently to develop asymptotically minimax methods in problems of recovering in nitedimensional objects (curves, densities, spectral densities, images) from noisy data. A rich and complex body of work has evolved, with nearly or exactly minimax estimators being obtained for a variety of interesting problems. Unfortunately, the results have often not been translated into practice, for a variety of reasons { sometimes, similarity to known methods, sometimes, computational intractability, and sometimes, lack of spatial adaptivity. We discuss a method for curve estimation based on n noisy data; one translates the empirical wavelet coe cients towards the origin by an amount p p 2 log(n) = n. The method is di erent from methods in common use today, is computationally practical, and is spatially adaptive; thus it avoids a number of previous objections to minimax estimators. At the same time, the method is nearly minimax for a wide variety of loss functions { e.g. pointwise error, global error measured in L p norms, pointwise and global error in estimation of derivatives { and for a wide range of smoothness classes, including standard Holder classes, Sobolev classes, and Bounded Variation. This is amuch broader nearoptimality than anything previously proposed in the minimax literature. Finally, the theory underlying the method is interesting, as it exploits a correspondence between statistical questions and questions of optimal recovery and informationbased complexity.
Selecting Local Models in Multiple Regression by Maximizing Power
, 2006
"... This paper considers multiple regression procedures for analyzing the relationship between a response variable and a vector of d covariates in a nonparametric setting where both tuning parameters and the number of covariates need to be selected. We introduce an approach which handles the dilemma tha ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
This paper considers multiple regression procedures for analyzing the relationship between a response variable and a vector of d covariates in a nonparametric setting where both tuning parameters and the number of covariates need to be selected. We introduce an approach which handles the dilemma that with high dimensional data the sparsity of data in regions of the sample space makes estimation of nonparametric curves and surfaces virtually impossible. This is accomplished by abandoning the goal of trying to estimate true underlying curves and instead estimating measures of dependence that can determine important relationships between variables. These dependence measures are based on local parametric fits on subsets of the covariate space that vary in both dimension and size within each dimension. The subset which maximizes a signal to noise ratio is chosen, where the signal is a local estimate of a dependence parameter which depends on the subset dimension and size, and the noise is an estimate of the standard error (SE) of the estimated signal. This approach of choosing the window size to maximize a signal to noise ratio lifts the curse of dimensionality because for regions with sparsity of data the SE is very large. It corresponds to asymptotically maximizing the probability of correctly finding nonspurious relationships between covariates and a response or, more precisely, maximizing asymptotic power among a class of asymptotic level α ttests indexed by subsets of the covariate space. Subsets that achieve this goal are called features. We investigate the properties
by Maximizing Power
, 2006
"... This paper considers multiple regression procedures for analyzing the relationship between a response variable and a vector of d covariates in a nonparametric setting where both tuning parameters and the number of covariates need to be selected. We introduce an approach which handles the dilemma tha ..."
Abstract
 Add to MetaCart
This paper considers multiple regression procedures for analyzing the relationship between a response variable and a vector of d covariates in a nonparametric setting where both tuning parameters and the number of covariates need to be selected. We introduce an approach which handles the dilemma that with high dimensional data the sparsity of data in regions of the sample space makes estimation of nonparametric curves and surfaces virtually impossible. This is accomplished by abandoning the goal of trying to estimate true underlying curves and instead estimating measures of dependence that can determine important relationships between variables. These dependence measures are based on local parametric fits on subsets of the covariate space that vary in both dimension and size within each dimension. The subset which maximizes a signal to noise ratio is chosen, where the signal is a local estimate of a dependence parameter which depends on the subset dimension and size, and the noise is an estimate of the standard error (SE) of the estimated signal. This approach of choosing the window size to maximize a signal to noise ratio lifts the curse of dimensionality because for regions with sparsity of data the SE is very large. It corresponds to asymptotically maximizing the probability of correctly finding nonspurious relationships between covariates and a response or, more precisely, maximizing asymptotic