Results 1  10
of
345
Matching pursuits with timefrequency dictionaries
 IEEE Transactions on Signal Processing
, 1993
"... AbstractWe introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. Matching pursuits are general procedures t ..."
Abstract

Cited by 1671 (13 self)
 Add to MetaCart
AbstractWe introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. Matching pursuits are general procedures to compute adaptive signal representations. With a dictionary of Gabor functions a matching pursuit defines an adaptive timefrequency transform. We derive a signal energy distribution in the timefrequency plane, which does not include interference terms, unlike Wigner and Cohen class distributions. A matching pursuit isolates the signal structures that are coherent with respect to a given dictionary. An application to pattern extraction from noisy signals is described. We compare a matching pursuit decomposition with a signal expansion over an optimized wavepacket orthonormal basis, selected with the algorithm of Coifman and Wickerhauser. I.
Singularity Detection And Processing With Wavelets
 IEEE Transactions on Information Theory
, 1992
"... Most of a signal information is often found in irregular structures and transient phenomena. We review the mathematical characterization of singularities with Lipschitz exponents. The main theorems that estimate local Lipschitz exponents of functions, from the evolution across scales of their wavele ..."
Abstract

Cited by 595 (13 self)
 Add to MetaCart
(Show Context)
Most of a signal information is often found in irregular structures and transient phenomena. We review the mathematical characterization of singularities with Lipschitz exponents. The main theorems that estimate local Lipschitz exponents of functions, from the evolution across scales of their wavelet transform are explained. We then prove that the local maxima of a wavelet transform detect the location of irregular structures and provide numerical procedures to compute their Lipschitz exponents. The wavelet transform of singularities with fast oscillations have a different behavior that we study separately. We show that the size of the oscillations can be measured from the wavelet transform local maxima. It has been shown that one and twodimensional signals can be reconstructed from the local maxima of their wavelet transform [14]. As an application, we develop an algorithm that removes white noises by discriminating the noise and the signal singularities through an analysis of their ...
Wavelet Threshold Estimators for Data With Correlated Noise
, 1994
"... Wavelet threshold estimators for data with stationary correlated noise are constructed by the following prescription. First, form the discrete wavelet transform of the data points. Next, apply a leveldependent soft threshold to the individual coefficients, allowing the thresholds to depend on the l ..."
Abstract

Cited by 240 (15 self)
 Add to MetaCart
Wavelet threshold estimators for data with stationary correlated noise are constructed by the following prescription. First, form the discrete wavelet transform of the data points. Next, apply a leveldependent soft threshold to the individual coefficients, allowing the thresholds to depend on the level in the wavelet transform. Finally, transform back to obtain the estimate in the original domain. The threshold used at level j is s j p 2 log n, where s j is the standard deviation of the coefficients at that level, and n is the overall sample size. The minimax properties of the estimators are investigated by considering a general problem in multivariate normal decision theory, concerned with the estimation of the mean vector of a general multivariate normal distribution subject to squared error loss. An ideal risk is obtained by the use of an `oracle' that provides the optimum diagonal projection estimate. This `benchmark' risk can be considered in its own right as a measure of the s...
Nonlinear BlackBox Modeling in System Identification: a Unified Overview
 Automatica
, 1995
"... A nonlinear black box structure for a dynamical system is a model structure that is prepared to describe virtually any nonlinear dynamics. There has been considerable recent interest in this area with structures based on neural networks, radial basis networks, wavelet networks, hinging hyperplanes, ..."
Abstract

Cited by 225 (16 self)
 Add to MetaCart
(Show Context)
A nonlinear black box structure for a dynamical system is a model structure that is prepared to describe virtually any nonlinear dynamics. There has been considerable recent interest in this area with structures based on neural networks, radial basis networks, wavelet networks, hinging hyperplanes, as well as wavelet transform based methods and models based on fuzzy sets and fuzzy rules. This paper describes all these approaches in a common framework, from a user's perspective. It focuses on what are the common features in the different approaches, the choices that have to be made and what considerations are relevant for a successful system identification application of these techniques. It is pointed out that the nonlinear structures can be seen as a concatenation of a mapping from observed data to a regression vector and a nonlinear mapping from the regressor space to the output space. These mappings are discussed separately. The latter mapping is usually formed as a basis function e...
Nonuniform Sampling and Reconstruction in ShiftInvariant Spaces
, 2001
"... This article discusses modern techniques for nonuniform sampling and reconstruction of functions in shiftinvariant spaces. It is a survey as well as a research paper and provides a unified framework for uniform and nonuniform sampling and reconstruction in shiftinvariant spaces by bringing togeth ..."
Abstract

Cited by 218 (13 self)
 Add to MetaCart
This article discusses modern techniques for nonuniform sampling and reconstruction of functions in shiftinvariant spaces. It is a survey as well as a research paper and provides a unified framework for uniform and nonuniform sampling and reconstruction in shiftinvariant spaces by bringing together wavelet theory, frame theory, reproducing kernel Hilbert spaces, approximation theory, amalgam spaces, and sampling. Inspired by applications taken from communication, astronomy, and medicine, the following aspects will be emphasized: (a) The sampling problem is well defined within the setting of shiftinvariant spaces. (b) The general theory works in arbitrary dimension and for a broad class of generators. (c) The reconstruction of a function from any sufficiently dense nonuniform sampling set is obtained by efficient iterative algorithms. These algorithms converge geometrically and are robust in the presence of noise. (d) To model the natural decay conditions of real signals and images, the sampling theory is developed in weighted Lpspaces.
Data compression and harmonic analysis
 IEEE Trans. Inform. Theory
, 1998
"... In this paper we review some recent interactions between harmonic analysis and data compression. The story goes back of course to Shannon’s R(D) theory... ..."
Abstract

Cited by 172 (22 self)
 Add to MetaCart
In this paper we review some recent interactions between harmonic analysis and data compression. The story goes back of course to Shannon’s R(D) theory...
Ridgelets: A key to higherdimensional intermittency?
, 1999
"... In dimensions two and higher, wavelets can efficiently represent only a small range of the full diversity of interesting behavior. In effect, wavelets are welladapted for pointlike phenomena, whereas in dimensions greater than one, interesting phenomena can be organized along lines, hyperplanes, and ..."
Abstract

Cited by 170 (11 self)
 Add to MetaCart
In dimensions two and higher, wavelets can efficiently represent only a small range of the full diversity of interesting behavior. In effect, wavelets are welladapted for pointlike phenomena, whereas in dimensions greater than one, interesting phenomena can be organized along lines, hyperplanes, and other nonpointlike structures, for which wavelets are poorly adapted. We discuss in this paper a new subject, ridgelet analysis, which can effectively deal with linelike phenomena in dimension 2, planelike phenomena in dimension 3 and so on. It encompasses a collection of tools which all begin from the idea of analysis by ridge functions ψ(u1x1+...+unxn) whose ridge profiles ψ are wavelets, or alternatively from performing a wavelet analysis in the Radon domain. The paper reviews recent work on the continuous ridgelet transform (CRT), ridgelet frames, ridgelet orthonormal bases, ridgelets and edges and describes a new notion of smoothness naturally attached to this new representation.
Diffusion Wavelets
, 2004
"... We present a multiresolution construction for efficiently computing, compressing and applying large powers of operators that have high powers with low numerical rank. This allows the fast computation of functions of the operator, notably the associated Green’s function, in compressed form, and their ..."
Abstract

Cited by 148 (16 self)
 Add to MetaCart
(Show Context)
We present a multiresolution construction for efficiently computing, compressing and applying large powers of operators that have high powers with low numerical rank. This allows the fast computation of functions of the operator, notably the associated Green’s function, in compressed form, and their fast application. Classes of operators satisfying these conditions include diffusionlike operators, in any dimension, on manifolds, graphs, and in nonhomogeneous media. In this case our construction can be viewed as a farreaching generalization of Fast Multipole Methods, achieved through a different point of view, and of the nonstandard wavelet representation of CalderónZygmund and pseudodifferential operators, achieved through a different multiresolution analysis adapted to the operator. We show how the dyadic powers of an operator can be used to induce a multiresolution analysis, as in classical LittlewoodPaley and wavelet theory, and we show how to construct, with fast and stable algorithms, scaling function and wavelet bases associated to this multiresolution analysis, and the corresponding downsampling operators, and use them to compress the corresponding powers of the operator. This allows to extend multiscale signal processing to general spaces (such as manifolds and graphs) in a very natural way, with corresponding fast algorithms.
The Curvelet Representation of Wave Propagators is Optimally Sparse
, 2004
"... This paper argues that curvelets provide a powerful tool for representing very general linear symmetric systems of hyperbolic differential equations. Curvelets are a recently developed multiscale system [10, 7] in which the elements are highly anisotropic at fine scales, with effective support shape ..."
Abstract

Cited by 104 (13 self)
 Add to MetaCart
This paper argues that curvelets provide a powerful tool for representing very general linear symmetric systems of hyperbolic differential equations. Curvelets are a recently developed multiscale system [10, 7] in which the elements are highly anisotropic at fine scales, with effective support shaped according to the parabolic scaling principle width ≈ length 2 at fine scales. We prove that for a wide class of linear hyperbolic differential equations, the curvelet representation of the solution operator is both optimally sparse and well organized. • It is sparse in the sense that the matrix entries decay nearly exponentially fast (i.e. faster than any negative polynomial), • and wellorganized in the sense that the very few nonnegligible entries occur near a few shifted diagonals. Indeed, we show that the wave group maps each curvelet onto a sum of curveletlike waveforms whose locations and orientations are obtained by following the different Hamiltonian flows—hence the diagonal shifts in the curvelet representation. A physical interpretation of this result is that curvelets may be viewed as coherent waveforms with enough frequency localization so that they behave like waves but at the same time, with enough spatial localization so that they simultaneously behave like particles.