Results 1 
7 of
7
On Nonreflecting Boundary Conditions
 J. COMPUT. PHYS
, 1995
"... Improvements are made in nonreflecting boundary conditions at artificial boundaries for use with the Helmholtz equation. First, it is shown how to remove the difficulties that arise when the exact DtN (DirichlettoNeumann) condition is truncated for use in computation, by modifying the truncated ..."
Abstract

Cited by 219 (4 self)
 Add to MetaCart
Improvements are made in nonreflecting boundary conditions at artificial boundaries for use with the Helmholtz equation. First, it is shown how to remove the difficulties that arise when the exact DtN (DirichlettoNeumann) condition is truncated for use in computation, by modifying the truncated condition. Second, the exact DtN boundary condition is derived for elliptic and spheroidal coordinates. Third, approximate local boundary conditions are derived for these coordinates. Fourth, the truncated DtN condition in elliptic and spheroidal coordinates is modified to remove difficulties. Fifth, a sequence of new and more accurate local boundary conditions is derived for polar coordinates in two dimensions. Numerical results are presented to demonstrate the usefulness of these improvements.
Numerical Solution Of Problems On Unbounded Domains. A Review
 A review, Appl. Numer. Math
, 1998
"... While numerically solving a problem initially formulated on an unbounded domain, one typically truncates this domain, which necessitates setting the artificial boundary conditions (ABC's) at the newly formed external boundary. The issue of setting the ABC's appears most significant in many ..."
Abstract

Cited by 126 (19 self)
 Add to MetaCart
While numerically solving a problem initially formulated on an unbounded domain, one typically truncates this domain, which necessitates setting the artificial boundary conditions (ABC's) at the newly formed external boundary. The issue of setting the ABC's appears most significant in many areas of scientific computing, for example, in problems originating from acoustics, electrodynamics, solid mechanics, and fluid dynamics. In particular, in computational fluid dynamics (where external problems represent a wide class of important formulations) the proper treatment of external boundaries may have a profound impact on the overall quality and performance of numerical algorithms and interpretation of the results. Most of the currently used techniques for setting the ABC's can basically be classified into two groups. The methods from the first group (global ABC's) usually provide high accuracy and robustness of the numerical procedure but often appear to be fairly cumbersome and (computa...
Absorbing Boundary Conditions for the Schrödinger Equation
 SIAM J. Sci. Comput
, 1999
"... A large number of differential equation problems which admit traveling waves are usually defined on very large or infinite domains. To numerically solve these problems on smaller subdomains of the original domain, artificial boundary conditions must be defined for these subdomains. One type of artif ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
(Show Context)
A large number of differential equation problems which admit traveling waves are usually defined on very large or infinite domains. To numerically solve these problems on smaller subdomains of the original domain, artificial boundary conditions must be defined for these subdomains. One type of artificial boundary condition which can minimize the size of such subdomains is the absorbing boundary condition. The imposition of absorbing boundary conditions is a technique used to reduce the necessary spatial domain when numerically solving partial differential equations that admit traveling waves. Such absorbing boundary conditions have been extensively studied in the context of hyperbolic wave equations. In this paper, general absorbing boundary conditions will be developed for the Schrödinger equation with one spatial dimension, using group velocity considerations. Previously published absorbing boundary conditions will be shown to reduce to special cases of this absorbing boundary condition. The wellposedness of the initial boundary value problem of the absorbing boundary condition, coupled to the interior Schrödinger equation, will also be discussed. Extension of the general absorbing boundary condition to higher spatial dimensions will be demonstrated. Numerical simulations using initial single Gaussian, double Gaussian, and a narrow Gaussian pulse distributions will be given, with comparision to exact solutions, to demonstrate the reflectivity properties of various orders of the absorbing boundary condition.
Artificial Boundary Conditions Based On The Difference Potentials Method
 IN PROCEEDINGS OF THE SIXTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL FLUID DYNAMICS, IV
, 1996
"... While numerically solving a problem initially formulated on an unbounded domain, one typically truncates this domain, which necessitates setting the artificial boundary conditions (ABC's) at the newly formed external boundary. The issue of setting the ABC's appears to be most significant i ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
(Show Context)
While numerically solving a problem initially formulated on an unbounded domain, one typically truncates this domain, which necessitates setting the artificial boundary conditions (ABC's) at the newly formed external boundary. The issue of setting the ABC's appears to be most significant in many areas of scientific computing, for example, in problems originating from acoustics, electrodynamics, solid mechanics, and fluid dynamics. In particular, in computational fluid dynamics (where external problems present a wide class of practically important formulations) the proper treatment of external boundaries may have a profound impact on the overall quality and performance of numerical algorithms. Most of the currently used techniques for setting the ABC's can basically be classified into two groups. The methods from the first group (global ABC's) usually provide high accuracy and robustness of the numerical procedure but often appear to be fairly cumbersome and (computationally) expensiv...
GPUaccelerated Fouriercontinuation solvers and
, 2013
"... physically exact computational boundary conditions for wave scattering problems ..."
Abstract
 Add to MetaCart
(Show Context)
physically exact computational boundary conditions for wave scattering problems