Results 1  10
of
789
On the optimality of the simple Bayesian classifier under zeroone loss
 MACHINE LEARNING
, 1997
"... The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containin ..."
Abstract

Cited by 818 (27 self)
 Add to MetaCart
(Show Context)
The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containing clear attribute dependences suggest that the answer to this question may be positive. This article shows that, although the Bayesian classifier’s probability estimates are only optimal under quadratic loss if the independence assumption holds, the classifier itself can be optimal under zeroone loss (misclassification rate) even when this assumption is violated by a wide margin. The region of quadraticloss optimality of the Bayesian classifier is in fact a secondorder infinitesimal fraction of the region of zeroone optimality. This implies that the Bayesian classifier has a much greater range of applicability than previously thought. For example, in this article it is shown to be optimal for learning conjunctions and disjunctions, even though they violate the independence assumption. Further, studies in artificial domains show that it will often outperform more powerful classifiers for common training set sizes and numbers of attributes, even if its bias is a priori much less appropriate to the domain. This article’s results also imply that detecting attribute dependence is not necessarily the best way to extend the Bayesian classifier, and this is also verified empirically.
Markov Logic Networks
 MACHINE LEARNING
, 2006
"... We propose a simple approach to combining firstorder logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a firstorder knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects in the ..."
Abstract

Cited by 816 (39 self)
 Add to MetaCart
We propose a simple approach to combining firstorder logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a firstorder knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects in the domain, it specifies a ground Markov network containing one feature for each possible grounding of a firstorder formula in the KB, with the corresponding weight. Inference in MLNs is performed by MCMC over the minimal subset of the ground network required for answering the query. Weights are efficiently learned from relational databases by iteratively optimizing a pseudolikelihood measure. Optionally, additional clauses are learned using inductive logic programming techniques. Experiments with a realworld database and knowledge base in a university domain illustrate the promise of this approach.
Implications of rational inattention
 JOURNAL OF MONETARY ECONOMICS
, 2002
"... A constraint that actions can depend on observations only through a communication channel with finite Shannon capacity is shown to be able to play a role very similar to that of a signal extraction problem or an adjustment cost in standard control problems. The resulting theory looks enough like fa ..."
Abstract

Cited by 525 (11 self)
 Add to MetaCart
A constraint that actions can depend on observations only through a communication channel with finite Shannon capacity is shown to be able to play a role very similar to that of a signal extraction problem or an adjustment cost in standard control problems. The resulting theory looks enough like familiar dynamic rational expectations theories to suggest that it might be useful and practical, while the implications for policy are different enough to be interesting.
Mixed membership stochastic block models for relational data with application to proteinprotein interactions
 In Proceedings of the International Biometrics Society Annual Meeting
, 2006
"... We develop a model for examining data that consists of pairwise measurements, for example, presence or absence of links between pairs of objects. Examples include protein interactions and gene regulatory networks, collections of authorrecipient email, and social networks. Analyzing such data with p ..."
Abstract

Cited by 378 (52 self)
 Add to MetaCart
We develop a model for examining data that consists of pairwise measurements, for example, presence or absence of links between pairs of objects. Examples include protein interactions and gene regulatory networks, collections of authorrecipient email, and social networks. Analyzing such data with probabilistic models requires special assumptions, since the usual independence or exchangeability assumptions no longer hold. We introduce a class of latent variable models for pairwise measurements: mixed membership stochastic blockmodels. Models in this class combine a global model of dense patches of connectivity (blockmodel) and a local model to instantiate nodespecific variability in the connections (mixed membership). We develop a general variational inference algorithm for fast approximate posterior inference. We demonstrate the advantages of mixed membership stochastic blockmodels with applications to social networks and protein interaction networks.
Active learning literature survey
, 2010
"... The key idea behind active learning is that a machine learning algorithm can achieve greater accuracy with fewer labeled training instances if it is allowed to choose the data from which is learns. An active learner may ask queries in the form of unlabeled instances to be labeled by an oracle (e.g., ..."
Abstract

Cited by 326 (1 self)
 Add to MetaCart
(Show Context)
The key idea behind active learning is that a machine learning algorithm can achieve greater accuracy with fewer labeled training instances if it is allowed to choose the data from which is learns. An active learner may ask queries in the form of unlabeled instances to be labeled by an oracle (e.g., a human annotator). Active learning is wellmotivated in many modern machine learning problems, where unlabeled data may be abundant but labels are difficult, timeconsuming, or expensive to obtain. This report provides a general introduction to active learning and a survey of the literature. This includes a discussion of the scenarios in which queries can be formulated, and an overview of the query strategy frameworks proposed in the literature to date. An analysis of the empirical and theoretical evidence for active learning, a summary of several problem setting variants, and a discussion
MulticastBased Inference of NetworkInternal Characteristics: Accuracy of Packet Loss Estimation
 IEEE Transactions on Information Theory
, 1998
"... We explore the use of endtoend multicast traffic as measurement probes to infer networkinternal characteristics. We have developed in an earlier paper [2] a Maximum Likelihood Estimator for packet loss rates on individual links based on losses observed by multicast receivers. This technique explo ..."
Abstract

Cited by 323 (40 self)
 Add to MetaCart
(Show Context)
We explore the use of endtoend multicast traffic as measurement probes to infer networkinternal characteristics. We have developed in an earlier paper [2] a Maximum Likelihood Estimator for packet loss rates on individual links based on losses observed by multicast receivers. This technique exploits the inherent correlation between such observations to infer the performance of paths between branch points in the multicast tree spanning the probe source and its receivers. We evaluate through analysis and simulation the accuracy of our estimator under a variety of network conditions. In particular, we report on the error between inferred loss rates and actual loss rates as we vary the network topology, propagation delay, packet drop policy, background traffic mix, and probe traffic type. In all but one case, estimated losses and probe losses agree to within 2 percent on average. We feel this accuracy is enough to reliably identify congested links in a widearea internetwork. KeywordsInternet performance, endtoend measurements, Maximum Likelihood Estimator, tomography I.
Discovering Statistically Significant Biclusters in Gene Expression Data
 In Proceedings of ISMB 2002
, 2002
"... In gene expression data, a bicluster is a subset of the genes exhibiting consistent patterns over a subset of the conditions. We propose a new method to detect significant biclusters in large expression datasets. Our approach is graph theoretic coupled with statistical modelling of the data. Under p ..."
Abstract

Cited by 302 (4 self)
 Add to MetaCart
In gene expression data, a bicluster is a subset of the genes exhibiting consistent patterns over a subset of the conditions. We propose a new method to detect significant biclusters in large expression datasets. Our approach is graph theoretic coupled with statistical modelling of the data. Under plausible assumptions, our algorithm is polynomial and is guaranteed to find the most significant biclusters. We tested our method on a collection of yeast expression profiles and on a human cancer dataset. Cross validation results show high specificity in assigning function to genes based on their biclusters, and we are able to annotate in this way 196 uncharacterized yeast genes. We also demonstrate how the biclusters lead to detecting new concrete biological associations. In cancer data we are able to detect and relate finer tissue types than was previously possible. We also show that the method outperforms the biclustering algorithm of Cheng and Church (2000).
Valid conjunction inference with the minimum statistic. NeuroImage 25, 653–660
, 2005
"... In logic a conjunction is defined as an AND between truth statements. In neuroimaging, investigators may look for brain areas activated by task A AND by task B, or a conjunction of tasks (Price & Friston, 1997). Friston et al. (1999b) introduced a minimum statistic test for conjunction. We refer ..."
Abstract

Cited by 256 (4 self)
 Add to MetaCart
(Show Context)
In logic a conjunction is defined as an AND between truth statements. In neuroimaging, investigators may look for brain areas activated by task A AND by task B, or a conjunction of tasks (Price & Friston, 1997). Friston et al. (1999b) introduced a minimum statistic test for conjunction. We refer to this method as the minimum statistic compared to the global null (MS/GN). The MS/GN is implemented in SPM2 and SPM99 software, and has been widely used as a test of conjunction. However, we assert that it does not have the correct null hypothesis for a test of logical AND, and further, this has led to confusion in the neuroimaging community. In this paper, we define a conjunction and explain the problem with the MS/GN test as a conjunction method. We present a survey of recent practice in neuroimaging which reveals that the MS/GN test is very often misinterpreted as evidence of a logical AND. We show that a correct test for a logical AND requires that all the comparisons in the conjunction are individually significant. This result holds even if the comparisons are not independent. We suggest that the revised test proposed here is the appropriate means for conjunction inference in neuroimaging. Nichols, et al. Valid Conjunction Inference with the Minimum Statistic 3 1