Results 1  10
of
524
A HeteroskedasticityConsistent Covariance Matrix Estimator And A Direct Test For Heteroskedasticity
, 1980
"... This paper presents a parameter covariance matrix estimator which is consistent even when the disturbances of a linear regression model are heteroskedastic. This estimator does not depend on a formal model of the structure of the heteroskedasticity. By comparing the elements of the new estimator ..."
Abstract

Cited by 3194 (5 self)
 Add to MetaCart
This paper presents a parameter covariance matrix estimator which is consistent even when the disturbances of a linear regression model are heteroskedastic. This estimator does not depend on a formal model of the structure of the heteroskedasticity. By comparing the elements of the new estimator to those of the usual covariance estimator, one obtains a direct test for heteroskedasticity, since in the absence of heteroskedasticity, the two estimators will be approximately equal, but will generally diverge otherwise. The test has an appealing least squares interpretation
Discrete Choice Methods with Simulation
, 2002
"... This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logi ..."
Abstract

Cited by 1321 (20 self)
 Add to MetaCart
This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value (including nested and crossnested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulationassisted estimation procedures are investigated and compared, including maximum simulated likelihood, the method of simulated moments, and the method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as antithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis– Hastings algorithm and its variant Gibbs sampling. No other book incorporates all these topics, which have risen in the past 20 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.
Social change and crime rate trends: a routine activity approach
 American Sociological Review
, 1979
"... In this paper we present a "routine activity approach " for analyzing crime rate trends and cycles. Rather than emphasizing the characteristics of offenders, with this approach we concentrate upon the circumstances in which they carry out predatory criminal acts. Most criminal acts require ..."
Abstract

Cited by 676 (5 self)
 Add to MetaCart
In this paper we present a "routine activity approach " for analyzing crime rate trends and cycles. Rather than emphasizing the characteristics of offenders, with this approach we concentrate upon the circumstances in which they carry out predatory criminal acts. Most criminal acts require convergence in space and time of likely offenders, suitable targets and the absence of capable guardians against crime. Human ecological theory facilitates an investigation into the way in which social structure produces this convergence, hence allowing illegal activities to feed upon the legal activities of everyday life. In particular, we hypothesize that the dispersion of activities away from households and families increases the opportunity for crime and thus generates higher crime rates. A variety of data is presented in support of the hypothesis, which helps explain crime rate trends in the United States 19471974 as a byproduct of changes in such variables as labor force participation and singleadult households.
A test for normality of observations and regression residuals
 Internat. Statist. Rev
, 1987
"... you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, noncommercial use. Please contact the publisher regarding any further use of this work. Publisher contact inform ..."
Abstract

Cited by 247 (0 self)
 Add to MetaCart
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, noncommercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
A Taxonomy of Global Optimization Methods Based on Response Surfaces
 Journal of Global Optimization
, 2001
"... Abstract. This paper presents a taxonomy of existing approaches for using response surfaces for global optimization. Each method is illustrated with a simple numerical example that brings out its advantages and disadvantages. The central theme is that methods that seem quite reasonable often have no ..."
Abstract

Cited by 235 (1 self)
 Add to MetaCart
(Show Context)
Abstract. This paper presents a taxonomy of existing approaches for using response surfaces for global optimization. Each method is illustrated with a simple numerical example that brings out its advantages and disadvantages. The central theme is that methods that seem quite reasonable often have nonobvious failure modes. Understanding these failure modes is essential for the development of practical algorithms that fulfill the intuitive promise of the response surface approach. Key words: global optimization, response surface, kriging, splines 1.
Understanding Instrumental Variables in Models with Essential Heterogeneity
 The Review of Economics and Statistics
, 2006
"... ..."
A Test for the Number of Factors in an Approximate Factor Model
 JOURNAL OF FINANCE
, 1993
"... An important issue in applications of multifactor models of asset returns is the appropriate number of factors. Most extant tests for the number of factors are valid only for strict factor models, in which diversifiable returns are uncorrelated across assets. In this paper we develop a test statisti ..."
Abstract

Cited by 139 (10 self)
 Add to MetaCart
An important issue in applications of multifactor models of asset returns is the appropriate number of factors. Most extant tests for the number of factors are valid only for strict factor models, in which diversifiable returns are uncorrelated across assets. In this paper we develop a test statistic to determine the number of factors in an approximate factor model of asset returns, which does not require that diversifiable components of returns be uncorrelated across assets. We find evidence for one to six pervasive factors in the crosssection of New York Stock Exchange and American Stock Exchange stock returns.
Using OutofSample Mean Squared Prediction Errors to Test the Martingale Difference Hypothesis
, 2004
"... We consider using outofsample mean squared prediction errors (MSPEs) to evaluate the null that a given series follows a zero mean martingale difference against the alternative that it is linearly predictable. Under the null of no predictability, the population MSPE of the null “no change” model eq ..."
Abstract

Cited by 119 (14 self)
 Add to MetaCart
(Show Context)
We consider using outofsample mean squared prediction errors (MSPEs) to evaluate the null that a given series follows a zero mean martingale difference against the alternative that it is linearly predictable. Under the null of no predictability, the population MSPE of the null “no change” model equals that of the linear alternative. We show analytically and via simulations that despite this equality, the alternative model’s sample MSPE is expected to be greater than the null’s. For rolling regression estimators of the alternative model’s parameters, we propose and evaluate an asymptotically normal test that properly accounts for the upward shift of the sample MSPE of the alternative model. Our simulations indicate that our proposed procedure works well.
Mutual Fund Performance and Seemingly Unrelated Assets
 Journal of Financial Economics
, 2001
"... Estimates of standard performance measures can be improved by using returns on assets not used to dene those measures. Alpha, the intercept in a regression of a fund's return on passive benchmark returns, can be estimated more precisely by using information in returns on nonbenchmark passive a ..."
Abstract

Cited by 91 (19 self)
 Add to MetaCart
Estimates of standard performance measures can be improved by using returns on assets not used to dene those measures. Alpha, the intercept in a regression of a fund's return on passive benchmark returns, can be estimated more precisely by using information in returns on nonbenchmark passive assets, whether or not one believes those assets are priced by the benchmarks. A fund's Sharpe ratio can be estimated more precisely by using returns on other assets as well as the fund. New estimates of these performance measures for a large universe of equity mutual funds exhibit substantial differences from the usual estimates.