Results 1  10
of
119
Determining Lyapunov Exponents from a Time Series
 Physica
, 1985
"... We present the first algorithms that allow the estimation of nonnegative Lyapunov exponents from an experimental time series. Lyapunov exponents, which provide a qualitative and quantitative characterization of dynamical behavior, are related to the exponentially fast divergence or convergence of n ..."
Abstract

Cited by 495 (1 self)
 Add to MetaCart
We present the first algorithms that allow the estimation of nonnegative Lyapunov exponents from an experimental time series. Lyapunov exponents, which provide a qualitative and quantitative characterization of dynamical behavior, are related to the exponentially fast divergence or convergence of nearby orbits in phase space. A system with one or more positive Lyapunov exponents is defined to be chaotic. Our method is rooted conceptually in a previously developed technique that could only be applied to analytically defined model systems: we monitor the longterm growth rate of small volume elements in an attractor. The method is tested on model systems with known Lyapunov spectra, and applied to data for the BelousovZhabotinskii reaction and CouetteTaylor flow. Contents 1.
Chaos and Nonlinear Dynamics: Application to Financial Markets
 Journal of Finance
, 1991
"... After the stock market crash of October 19, 1987, interest in nonlinear dynamics, especially deterministic chaotic dynamics, has increased in both the financial press and the academic literature. This has come about because the frequency of large moves in stock markets is greater than would be expec ..."
Abstract

Cited by 195 (3 self)
 Add to MetaCart
After the stock market crash of October 19, 1987, interest in nonlinear dynamics, especially deterministic chaotic dynamics, has increased in both the financial press and the academic literature. This has come about because the frequency of large moves in stock markets is greater than would be expected
A practical method for calculating largest Lyapunov exponents from small data sets
 PHYSICA D
, 1993
"... Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the largest Lyapunov exponent. Lyapunov exponents quantify the exponential divergence of initially close statespace trajectories and estimate the amount of chaos in a system. We present a new m ..."
Abstract

Cited by 181 (0 self)
 Add to MetaCart
Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the largest Lyapunov exponent. Lyapunov exponents quantify the exponential divergence of initially close statespace trajectories and estimate the amount of chaos in a system. We present a new method for calculating the largest Lyapunov exponent from an experimental time series. The method follows directly from the definition of the largest Lyapunov exponent and is accurate because it takes advantage of all the available data. We show that the algorithm is fast, easy to implement, and robust to changes in the following quantities: embedding dimension, size of data set, reconstruction delay, and noise level. Furthermore, one may use the algorithm to calculate simultaneously the correlation dimension. Thus, one sequence of computations will yield an estimate of both the level of chaos and the system complexity.
Estimating fractal dimension
 Journal of the Optical Society of America A
, 1990
"... Fractals arise from a variety of sources and have been observed in nature and on computer screens. One of the exceptional characteristics of fractals is that they can be described by a noninteger dimension. The geometry of fractals and the mathematics of fractal dimension have provided useful tools ..."
Abstract

Cited by 123 (4 self)
 Add to MetaCart
(Show Context)
Fractals arise from a variety of sources and have been observed in nature and on computer screens. One of the exceptional characteristics of fractals is that they can be described by a noninteger dimension. The geometry of fractals and the mathematics of fractal dimension have provided useful tools for a variety of scientific disciplines, among which is chaos. Chaotic dynamical systems exhibit trajectories in their phase space that converge to a strange attractor. The fractal dimension of this attractor counts the effective number of degrees of freedom in the dynamical system and thus quantifies its complexity. In recent years, numerical methods have been developed for estimating the dimension directly from the observed behavior of the physical system. The purpose of this paper is to survey briefly the kinds of fractals that appear in scientific research, to discuss the application of fractals to nonlinear dynamical systems, and finally to review more comprehensively the state of the art in numerical methods for estimating the fractal dimension of a strange attractor. Confusion is a word we have invented for an order which is not understood.Henry Miller, "Interlude," Tropic of Capricorn Numerical coincidence is a common path to intellectual perdition in our quest for meaning. We delight in catalogs of disparate items united by the same number, and often feel in our gut that some unity must underlie it all.
Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field
, 2005
"... Many complex and interesting phenomena in nature are due to nonlinear phenomena. The theory of nonlinear dynamical systems, also called ‘chaos theory’, has now progressed to a stage, where it becomes possible to study selforganization and pattern formation in the complex neuronal networks of the br ..."
Abstract

Cited by 82 (0 self)
 Add to MetaCart
Many complex and interesting phenomena in nature are due to nonlinear phenomena. The theory of nonlinear dynamical systems, also called ‘chaos theory’, has now progressed to a stage, where it becomes possible to study selforganization and pattern formation in the complex neuronal networks of the brain. One approach to nonlinear time series analysis consists of reconstructing, from time series of EEG or MEG, an attractor of the underlying dynamical system, and characterizing it in terms of its dimension (an estimate of the degrees of freedom of the system), or its Lyapunov exponents and entropy (reflecting unpredictability of the dynamics due to the sensitive dependence on initial conditions). More recently developed nonlinear measures characterize other features of local brain dynamics (forecasting, time asymmetry, determinism) or the nonlinear synchronization between recordings from different brain regions. Nonlinear time series has been applied to EEG and MEG of healthy subjects during notask resting states, perceptual processing, performance of cognitive tasks and different sleep stages. Many pathologic states have been examined as well, ranging from toxic states, seizures, and psychiatric disorders to Alzheimer’s, Parkinson’s and Cre1utzfeldtJakob’s disease. Interpretation of these results in terms of ‘functional sources ’ and ‘functional networks ’ allows the identification of three basic patterns of brain dynamics: (i) normal, ongoing dynamics during a notask, resting state in healthy subjects; this state is characterized by a high dimensional complexity and a relatively low and fluctuating level of synchronization of the neuronal networks; (ii) hypersynchronous, highly nonlinear dynamics of epileptic seizures; (iii) dynamics of degenerative encephalopathies with an abnormally low level of between area synchronization. Only intermediate levels of rapidly fluctuating synchronization, possibly due to critical dynamics near a phase transition, are associated with normal information
Measuring spatiotemporal coordination in a modular robotic system
 Proceedings of Artificial Life X. in press
, 2006
"... Abstract. In this paper we present a novel informationtheoretic measure of spatiotemporal coordination in a modular robotic system, and use it as a fitness function in evolving the system. This approach exemplifies a new methodology formalizing coevolution in multiagent adaptive systems: informat ..."
Abstract

Cited by 49 (14 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper we present a novel informationtheoretic measure of spatiotemporal coordination in a modular robotic system, and use it as a fitness function in evolving the system. This approach exemplifies a new methodology formalizing coevolution in multiagent adaptive systems: informationdriven evolutionary design. The methodology attempts to link together different aspects of information transfer involved in adaptive systems, and suggests to approximate direct taskspecific fitness functions with intrinsic selection pressures. In particular, the informationtheoretic measure of coordination employed in this work estimates the generalized correlation entropy and the generalized excess entropy computed over a multivariate time series of actuators ’ states. The simulated modular robotic system evolved according to the new measure exhibits regular locomotion and performs well in challenging terrains. 1
The Maintenance of Uncertainty
 in Control Systems
, 1997
"... It is important to remain uncertain, of observation, model and law. For the Fermi Summer School, Criticisms Requested email : lenny@maths.ox.ac.uk, Contents 1 ..."
Abstract

Cited by 40 (8 self)
 Add to MetaCart
(Show Context)
It is important to remain uncertain, of observation, model and law. For the Fermi Summer School, Criticisms Requested email : lenny@maths.ox.ac.uk, Contents 1
Generalized Redundancies for Time Series Analysis
 Physica D
, 1995
"... Extensions to various informationtheoretic quantities (such as entropy, redundancy, and mutual information) are discussed in the context of their role in nonlinear time series analysis. We also discuss "linearized" versions of these quantities and their use as benchmarks in tests for nonl ..."
Abstract

Cited by 38 (0 self)
 Add to MetaCart
Extensions to various informationtheoretic quantities (such as entropy, redundancy, and mutual information) are discussed in the context of their role in nonlinear time series analysis. We also discuss "linearized" versions of these quantities and their use as benchmarks in tests for nonlinearity. Many of these quantities can be expressed in terms of the generalized correlation integral, and this expression permits us to more clearly exhibit the relationships of these quantities to each other and to other commonly used nonlinear statistics (such as the BDS and GreenSavit statistics). Further, numerical estimation of these quantities is found to be more accurate and more efficient when the the correlation integral is employed in the computation. Finally, we consider several "local" versions of these quantities, including a local KolmogorovSinai entropy, which gives an estimate of variability of the shortterm predictability. 1 Introduction In Shaw's influential (and prizewinning)...