Results 1 
2 of
2
Preconditioning techniques for large linear systems: A survey
 J. COMPUT. PHYS
, 2002
"... This article surveys preconditioning techniques for the iterative solution of large linear systems, with a focus on algebraic methods suitable for general sparse matrices. Covered topics include progress in incomplete factorization methods, sparse approximate inverses, reorderings, parallelization i ..."
Abstract

Cited by 188 (5 self)
 Add to MetaCart
(Show Context)
This article surveys preconditioning techniques for the iterative solution of large linear systems, with a focus on algebraic methods suitable for general sparse matrices. Covered topics include progress in incomplete factorization methods, sparse approximate inverses, reorderings, parallelization issues, and block and multilevel extensions. Some of the challenges ahead are also discussed. An extensive bibliography completes the paper.
Finding Dense Subgraphs for Sparse Undirected, Directed, and Bipartite Graphs
, 2009
"... This paper presents a method for identifying a set of dense subgraphs of a given sparse graph. Within the main applications of this “dense subgraph problem”, the dense subgraphs are interpreted as communities, as in, e.g., social networks. The problem of identifying dense subgraphs helps analyze gra ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
This paper presents a method for identifying a set of dense subgraphs of a given sparse graph. Within the main applications of this “dense subgraph problem”, the dense subgraphs are interpreted as communities, as in, e.g., social networks. The problem of identifying dense subgraphs helps analyze graph structures and complex networks and it is known to be challenging. It bears some similarities with the problem of reordering/blocking matrices in sparse matrix techniques. We exploit this link and adapt the idea of recognizing matrix column similarities, in order to compute a partial clustering of the vertices in a graph, where each cluster represents a dense subgraph. In contrast to existing subgraph extraction techniques which are based on a complete clustering of the graph nodes, the proposed algorithm takes into account the fact that not every participating node in the network needs to belong to a community. Another advantage is that the method does not require to specify the number of clusters; this number is usually not known in advance and is difficult to estimate. The computational process is very efficient, and the effectiveness of the proposed method is demonstrated in a few reallife examples.