Results 1  10
of
666
An open graph visualization system and its applications to software engineering
 SOFTWARE  PRACTICE AND EXPERIENCE
, 2000
"... We describe a package of practical tools and libraries for manipulating graphs and their drawings. Our design, which aimed at facilitating the combination of the package components with other tools, includes stream and event interfaces for graph operations, highquality static and dynamic layout alg ..."
Abstract

Cited by 452 (9 self)
 Add to MetaCart
We describe a package of practical tools and libraries for manipulating graphs and their drawings. Our design, which aimed at facilitating the combination of the package components with other tools, includes stream and event interfaces for graph operations, highquality static and dynamic layout algorithms, and the ability to handle sizable graphs. We conclude with a description of the applications of this package to a variety of software engineering tools.
Information flow inference for ML
 ACM Trans. Program. Lang. Syst
"... This paper presents a typebased information flow analysis for a callbyvalue λcalculus equipped with references, exceptions and letpolymorphism, which we refer to as Core ML. The type system is constraintbased and has decidable type inference. Its noninterference proof is reasonably lightweigh ..."
Abstract

Cited by 260 (4 self)
 Add to MetaCart
(Show Context)
This paper presents a typebased information flow analysis for a callbyvalue λcalculus equipped with references, exceptions and letpolymorphism, which we refer to as Core ML. The type system is constraintbased and has decidable type inference. Its noninterference proof is reasonably lightweight, thanks to the use of a number of orthogonal techniques. First, a syntactic segregation between values and expressions allows a lighter formulation of the type system. Second, noninterference is reduced to subject reduction for a nonstandard language extension. Lastly, a semisyntactic approach to type soundness allows dealing with constraintbased polymorphism separately.
A Linear Logical Framework
, 1996
"... We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. ..."
Abstract

Cited by 238 (49 self)
 Add to MetaCart
We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science  LICS'96 (E. Clarke editor), pp. 264275, New Brunswick, NJ, July 2730 1996. mal basis for a conservative extension of the LF logical framework. LLF combines the expressive power of dependent types with linear logic to permit the natural and concise representation of a whole new class of deductive systems, namely those dealing with state. As an example we encode a version of MiniML with references including its type system, its operational semantics, and a proof of type preservation. Another example is the encoding of a sequent calculus for classical linear logic and its cut elimination theorem. LLF can also be given an operational interpretation as a logic programming language under which the representations above can be used for type inference, evaluation and cutelimination. 1 Introduction A logical framework is a formal system desig...
TIL: A TypeDirected Optimizing Compiler for ML
 IN ACM SIGPLAN CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION
, 1995
"... We describe a new compiler for Standard ML called TIL, that is based on four technologies: intensional polymorphism, tagfree garbage collection, conventional functional language optimization, and loop optimization. We use intensional polymorphism and tagfree garbage collection to provide specializ ..."
Abstract

Cited by 235 (39 self)
 Add to MetaCart
We describe a new compiler for Standard ML called TIL, that is based on four technologies: intensional polymorphism, tagfree garbage collection, conventional functional language optimization, and loop optimization. We use intensional polymorphism and tagfree garbage collection to provide specialized representations, even though SML is a polymorphic language. We use conventional functional language optimization to reduce the cost of intensional polymorphism, and loop optimization to generate good code for recursive functions. We present an example of TIL compiling an SML function to machine code, and compare the performance of TIL code against that of a widely used compiler, Standard ML of New Jersey.
Typedirected partial evaluation
 Proceedings of the TwentyThird Annual ACM Symposium on Principles of Programming Languages
, 1996
"... Abstract. Typedirected partial evaluation stems from the residualization of arbitrary static values in dynamic contexts, given their type. Its algorithm coincides with the one for coercing asubtype value into a supertype value, which itself coincides with the one of normalization in thecalculus. T ..."
Abstract

Cited by 219 (38 self)
 Add to MetaCart
(Show Context)
Abstract. Typedirected partial evaluation stems from the residualization of arbitrary static values in dynamic contexts, given their type. Its algorithm coincides with the one for coercing asubtype value into a supertype value, which itself coincides with the one of normalization in thecalculus. Typedirected partial evaluation is thus used to specialize compiled, closed programs, given their type. Since Similix, letinsertion is a cornerstone of partial evaluators for callbyvalue procedural programs with computational e ects. It prevents the duplication of residual computations, and more generally maintains the order of dynamic side e ects in residual programs. This article describes the extension of typedirected partial evaluation to insert residual let expressions. This extension requires the userto annotate arrowtypes with e ect information. It is achieved by delimiting and abstracting control, comparably to continuationbased specialization in direct style. It enables typedirected partial evaluation of e ectful programs (e.g.,ade nitional lambdainterpreter for an imperative language) that are in direct style. The residual programs are in Anormal form. 1
A New Approach to Abstract Syntax Involving Binders
 In 14th Annual Symposium on Logic in Computer Science
, 1999
"... Syntax Involving Binders Murdoch Gabbay Cambridge University DPMMS Cambridge CB2 1SB, UK M.J.Gabbay@cantab.com Andrew Pitts Cambridge University Computer Laboratory Cambridge CB2 3QG, UK ap@cl.cam.ac.uk Abstract The FraenkelMostowski permutation model of set theory with atoms (FMsets) ..."
Abstract

Cited by 176 (20 self)
 Add to MetaCart
(Show Context)
Syntax Involving Binders Murdoch Gabbay Cambridge University DPMMS Cambridge CB2 1SB, UK M.J.Gabbay@cantab.com Andrew Pitts Cambridge University Computer Laboratory Cambridge CB2 3QG, UK ap@cl.cam.ac.uk Abstract The FraenkelMostowski permutation model of set theory with atoms (FMsets) can serve as the semantic basis of metalogics for specifying and reasoning about formal systems involving name binding, ffconversion, capture avoiding substitution, and so on. We show that in FMset theory one can express statements quantifying over `fresh' names and we use this to give a novel settheoretic interpretation of name abstraction. Inductively defined FMsets involving this nameabstraction set former (together with cartesian product and disjoint union) can correctly encode objectlevel syntax modulo ffconversion. In this way, the standard theory of algebraic data types can be extended to encompass signatures involving binding operators. In particular, there is an associated n...
Using UML – Software Engineering with Objects and Components. AddisonWesley – An imprint of Pearson Education Limited, updated edition
, 2000
"... le ..."
How to Declare an Imperative
, 1995
"... How can we integrate interaction into a purely declarative language? This tutorial describes a solution to this problem based on a monad. The solution has been implemented in the functional language Haskell and the declarative language Escher. Comparisons are given to other approaches to interaction ..."
Abstract

Cited by 111 (3 self)
 Add to MetaCart
How can we integrate interaction into a purely declarative language? This tutorial describes a solution to this problem based on a monad. The solution has been implemented in the functional language Haskell and the declarative language Escher. Comparisons are given to other approaches to interaction based on synchronous streams, continuations, linear logic, and side effects.