Results 1  10
of
381
Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
, 1998
"... SeDuMi is an addon for MATLAB, that lets you solve optimization problems with linear, quadratic and semidefiniteness constraints. It is possible to have complex valued data and variables in SeDuMi. Moreover, large scale optimization problems are solved efficiently, by exploiting sparsity. This pape ..."
Abstract

Cited by 1368 (5 self)
 Add to MetaCart
SeDuMi is an addon for MATLAB, that lets you solve optimization problems with linear, quadratic and semidefiniteness constraints. It is possible to have complex valued data and variables in SeDuMi. Moreover, large scale optimization problems are solved efficiently, by exploiting sparsity. This paper describes how to work with this toolbox.
A tutorial on support vector regression
, 2004
"... In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing ..."
Abstract

Cited by 865 (3 self)
 Add to MetaCart
In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.
Interiorpoint Methods
, 2000
"... The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex quadrati ..."
Abstract

Cited by 612 (15 self)
 Add to MetaCart
(Show Context)
The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex quadratic programming, semidefinite programming, and nonconvex and nonlinear problems, have reached varying levels of maturity. We review some of the key developments in the area, including comments on both the complexity theory and practical algorithms for linear programming, semidefinite programming, monotone linear complementarity, and convex programming over sets that can be characterized by selfconcordant barrier functions.
SDPT3  a MATLAB software package for semidefinite programming
 OPTIMIZATION METHODS AND SOFTWARE
, 1999
"... This software package is a Matlab implementation of infeasible pathfollowing algorithms for solving standard semidefinite programming (SDP) problems. Mehrotratype predictorcorrector variants are included. Analogous algorithms for the homogeneous formulation of the standard SDP problem are also imp ..."
Abstract

Cited by 361 (16 self)
 Add to MetaCart
(Show Context)
This software package is a Matlab implementation of infeasible pathfollowing algorithms for solving standard semidefinite programming (SDP) problems. Mehrotratype predictorcorrector variants are included. Analogous algorithms for the homogeneous formulation of the standard SDP problem are also implemented. Four types of search directions are available, namely, the AHO, HKM, NT, and GT directions. A few classes of SDP problems are included as well. Numerical results for these classes show that our algorithms are fairly efficient and robust on problems with dimensions of the order of a few hundreds.
Solving semidefinitequadraticlinear programs using SDPT3
 MATHEMATICAL PROGRAMMING
, 2003
"... This paper discusses computational experiments with linear optimization problems involving semidefinite, quadratic, and linear cone constraints (SQLPs). Many test problems of this type are solved using a new release of SDPT3, a Matlab implementation of infeasible primaldual pathfollowing algorithm ..."
Abstract

Cited by 243 (19 self)
 Add to MetaCart
(Show Context)
This paper discusses computational experiments with linear optimization problems involving semidefinite, quadratic, and linear cone constraints (SQLPs). Many test problems of this type are solved using a new release of SDPT3, a Matlab implementation of infeasible primaldual pathfollowing algorithms. The software developed by the authors uses Mehrotratype predictorcorrector variants of interiorpoint methods and two types of search directions: the HKM and NT directions. A discussion of implementation details is provided and computational results on problems from the SDPLIB and DIMACS Challenge collections are reported.
Efficient SVM training using lowrank kernel representations
 Journal of Machine Learning Research
, 2001
"... SVM training is a convex optimization problem which scales with the training set size rather than the feature space dimension. While this is usually considered to be a desired quality, in large scale problems it may cause training to be impractical. The common techniques to handle this difficulty ba ..."
Abstract

Cited by 240 (3 self)
 Add to MetaCart
(Show Context)
SVM training is a convex optimization problem which scales with the training set size rather than the feature space dimension. While this is usually considered to be a desired quality, in large scale problems it may cause training to be impractical. The common techniques to handle this difficulty basically build a solution by solving a sequence of small scale subproblems. Our current effort is concentrated on the rank of the kernel matrix as a source for further enhancement of the training procedure. We first show that for a low rank kernel matrix it is possible to design a better interior point method (IPM) in terms of storage requirements as well as computational complexity. We then suggest an efficient use of a known factorization technique to approximate a given kernel matrix by a low rank matrix, which in turn will be used to feed the optimizer. Finally, we derive an upper bound on the change in the objective function value based on the approximation error and the number of active constraints (support vectors). This bound is general in the sense that it holds regardless of the approximation method.
LOQO: An interior point code for quadratic programming
, 1994
"... ABSTRACT. This paper describes a software package, called LOQO, which implements a primaldual interiorpoint method for general nonlinear programming. We focus in this paper mainly on the algorithm as it applies to linear and quadratic programming with only brief mention of the extensions to convex ..."
Abstract

Cited by 194 (10 self)
 Add to MetaCart
(Show Context)
ABSTRACT. This paper describes a software package, called LOQO, which implements a primaldual interiorpoint method for general nonlinear programming. We focus in this paper mainly on the algorithm as it applies to linear and quadratic programming with only brief mention of the extensions to convex and general nonlinear programming, since a detailed paper describing these extensions were published recently elsewhere. In particular, we emphasize the importance of establishing and maintaining symmetric quasidefiniteness of the reduced KKT system. We show that the industry standard MPS format can be nicely formulated in such a way to provide quasidefiniteness. Computational results are included for a variety of linear and quadratic programming problems. 1.
On the NesterovTodd direction in semidefinite programming
 SIAM JOURNAL ON OPTIMIZATION
, 1996
"... Nesterov and Todd discuss several pathfollowing and potentialreduction interiorpoint methods for certain convex programming problems. In the special case of semidefinite programming, we discuss how to compute the corresponding directions efficiently, how to view them as Newton directions, and how ..."
Abstract

Cited by 132 (21 self)
 Add to MetaCart
(Show Context)
Nesterov and Todd discuss several pathfollowing and potentialreduction interiorpoint methods for certain convex programming problems. In the special case of semidefinite programming, we discuss how to compute the corresponding directions efficiently, how to view them as Newton directions, and how to take Mehrotra predictorcorrector steps in this framework. We also provide some computational results suggesting that our algorithm is more robust than alternative methods.
R.J.: Interiorpoint methods for nonconvex nonlinear programming: orderings and higherorder methods
 Mathematical Programming Ser. B
, 2000
"... Abstract. In this paper, we present the formulation and solution of optimization problems with complementarity constraints using an interiorpoint method for nonconvex nonlinear programming. We identify possible difficulties that could arise, such as unbounded faces of dual variables, linear depend ..."
Abstract

Cited by 117 (8 self)
 Add to MetaCart
Abstract. In this paper, we present the formulation and solution of optimization problems with complementarity constraints using an interiorpoint method for nonconvex nonlinear programming. We identify possible difficulties that could arise, such as unbounded faces of dual variables, linear dependence of constraint gradients and initialization issues. We suggest remedies. We include encouraging numerical results on the MacMPEC test suite of problems.