Results 1 
1 of
1
Factoring polynomials with rational coefficients
 MATH. ANN
, 1982
"... In this paper we present a polynomialtime algorithm to solve the following problem: given a nonzero polynomial fe Q[X] in one variable with rational coefficients, find the decomposition of f into irreducible factors in Q[X]. It is well known that this is equivalent to factoring primitive polynomia ..."
Abstract

Cited by 982 (11 self)
 Add to MetaCart
(Show Context)
In this paper we present a polynomialtime algorithm to solve the following problem: given a nonzero polynomial fe Q[X] in one variable with rational coefficients, find the decomposition of f into irreducible factors in Q[X]. It is well known that this is equivalent to factoring primitive polynomials feZ[X] into irreducible factors in Z[X]. Here we call f ~ Z[X] primitive if the greatest common divisor of its coefficients (the content of f) is 1. Our algorithm performs well in practice, cf. [8]. Its running time, measured in bit operations, is O(nl2+n9(log[fD3). Here f~Tl[X] is the polynomial to be factored, n = deg(f) is the degree of f, and for a polynomial ~ a ~ i with real coefficients a i. i An outline of the algorithm is as follows. First we find, for a suitable small prime number p, a padic irreducible factor h of f, to a certain precision. This is done with Berlekamp's algorithm for factoring polynomials over small finite fields, combined with Hensel's lemma. Next we look for the irreducible factor h o of f in