Results 11  20
of
888
Adaptive submodularity: Theory and applications in active learning and stochastic optimization
 J. Artificial Intelligence Research
, 2011
"... Many problems in artificial intelligence require adaptively making a sequence of decisions with uncertain outcomes under partial observability. Solving such stochastic optimization problems is a fundamental but notoriously difficult challenge. In this paper, we introduce the concept of adaptive subm ..."
Abstract

Cited by 64 (15 self)
 Add to MetaCart
Many problems in artificial intelligence require adaptively making a sequence of decisions with uncertain outcomes under partial observability. Solving such stochastic optimization problems is a fundamental but notoriously difficult challenge. In this paper, we introduce the concept of adaptive submodularity, generalizing submodular set functions to adaptive policies. We prove that if a problem satisfies this property, a simple adaptive greedy algorithm is guaranteed to be competitive with the optimal policy. In addition to providing performance guarantees for both stochastic maximization and coverage, adaptive submodularity can be exploited to drastically speed up the greedy algorithm by using lazy evaluations. We illustrate the usefulness of the concept by giving several examples of adaptive submodular objectives arising in diverse AI applications including management of sensing resources, viral marketing and active learning. Proving adaptive submodularity for these problems allows us to recover existing results in these applications as special cases, improve approximation guarantees and handle natural generalizations. 1.
Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal
 In Proc. of ACM Symposium on Theory of computing (STOC
, 2007
"... ABSTRACT In the MINIMUM BOUNDED DEGREE SPANNING TREE problem,we are given an undirected graph with a degree upper bound Bv oneach vertex v, and the task is to find a spanning tree of minimumcost which satisfies all the degree bounds. Let OPT be the costof an optimal solution to this problem. In this ..."
Abstract

Cited by 63 (8 self)
 Add to MetaCart
ABSTRACT In the MINIMUM BOUNDED DEGREE SPANNING TREE problem,we are given an undirected graph with a degree upper bound Bv oneach vertex v, and the task is to find a spanning tree of minimumcost which satisfies all the degree bounds. Let OPT be the costof an optimal solution to this problem. In this paper, we present a polynomial time algorithm which returns a spanning tree T ofcost at most OPT and dT (v) ^ Bv + 1 for all v, where dT (v)denotes the degree of v in T. This generalizes a result of Furerand Raghavachari [8] to weighted graphs, and settles a 15yearold conjecture of Goemans [10] affirmatively. The algorithm generalizes when each vertex v has a degree lower bound Av and a degreeupper bound Bv, and returns a spanning tree with cost at most OPTand Av \Gamma 1 ^ dT (v) ^ Bv + 1 for all v. This is essentially thebest possible. The main technique used is an extension of the iterative rounding method introduced by Jain [12] for the design ofapproximation algorithms.
Maximizing a Monotone Submodular Function subject to a Matroid Constraint
, 2008
"... Let f: 2 X → R+ be a monotone submodular set function, and let (X, I) be a matroid. We consider the problem maxS∈I f(S). It is known that the greedy algorithm yields a 1/2 approximation [14] for this problem. For certain special cases, e.g. max S≤k f(S), the greedy algorithm yields a (1 − 1/e)app ..."
Abstract

Cited by 63 (0 self)
 Add to MetaCart
Let f: 2 X → R+ be a monotone submodular set function, and let (X, I) be a matroid. We consider the problem maxS∈I f(S). It is known that the greedy algorithm yields a 1/2 approximation [14] for this problem. For certain special cases, e.g. max S≤k f(S), the greedy algorithm yields a (1 − 1/e)approximation. It is known that this is optimal both in the value oracle model (where the only access to f is through a black box returning f(S) for a given set S) [28], and also for explicitly posed instances assuming P � = NP [10]. In this paper, we provide a randomized (1 − 1/e)approximation for any monotone submodular function and an arbitrary matroid. The algorithm works in the value oracle model. Our main tools are a variant of the pipage rounding technique of Ageev and Sviridenko [1], and a continuous greedy process that might be of independent interest. As a special case, our algorithm implies an optimal approximation for the Submodular Welfare Problem in the value oracle model [32]. As a second application, we show that the Generalized Assignment Problem (GAP) is also a special case; although the reduction requires X  to be exponential in the original problem size, we are able to achieve a (1 − 1/e − o(1))approximation for GAP, simplifying previously known algorithms. Additionally, the reduction enables us to obtain approximation algorithms for variants of GAP with more general constraints.
Structured prediction, dual extragradient and Bregman projections
 Journal of Machine Learning Research
, 2006
"... We present a simple and scalable algorithm for maximummargin estimation of structured output models, including an important class of Markov networks and combinatorial models. We formulate the estimation problem as a convexconcave saddlepoint problem that allows us to use simple projection methods ..."
Abstract

Cited by 62 (2 self)
 Add to MetaCart
(Show Context)
We present a simple and scalable algorithm for maximummargin estimation of structured output models, including an important class of Markov networks and combinatorial models. We formulate the estimation problem as a convexconcave saddlepoint problem that allows us to use simple projection methods based on the dual extragradient algorithm (Nesterov, 2003). The projection step can be solved using dynamic programming or combinatorial algorithms for mincost convex flow, depending on the structure of the problem. We show that this approach provides a memoryefficient alternative to formulations based on reductions to a quadratic program (QP). We analyze the convergence of the method and present experiments on two very different structured prediction tasks: 3D image segmentation and word alignment, illustrating the favorable scaling properties of our algorithm. 1 1.
Survivable network design with degree or order constraints
 SIAM J. ON COMPUTING
, 2009
"... We present algorithmic and hardness results for network design problems with degree or order constraints. The first problem we consider is the Survivable Network Design problem with degree constraints on vertices. The objective is to find a minimum cost subgraph which satisfies connectivity requir ..."
Abstract

Cited by 62 (8 self)
 Add to MetaCart
We present algorithmic and hardness results for network design problems with degree or order constraints. The first problem we consider is the Survivable Network Design problem with degree constraints on vertices. The objective is to find a minimum cost subgraph which satisfies connectivity requirements between vertices and also degree upper bounds Bv on the vertices. This includes the wellstudied Minimum Bounded Degree Spanning Tree problem as a special case. Our main result is a (2, 2Bv +3)approximation algorithm for the edgeconnectivity Survivable Network Design problem with degree constraints, where the cost of the returned solution is at most twice the cost of an optimum solution (satisfying the degree bounds) and the degree of each vertex v is at most 2Bv + 3. This implies the first constant factor (bicriteria) approximation algorithms for many degree constrained network design problems, including the Minimum Bounded Degree Steiner Forest problem. Our results also extend to directed graphs and provide the first constant factor (bicriteria) approximation algorithms for the Minimum Bounded Degree Arborescence problem and the Minimum Bounded Degree Strongly kEdgeConnected Subgraph problem. In contrast, we show that the vertexconnectivity Survivable Network Design problem with degree constraints is hard to approximate, even when the cost of every edge is zero. A striking aspect of our algorithmic
On the impact of combinatorial structure on congestion games
 in Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS
"... We study the impact of combinatorial structure in congestion games on the complexity of computing pure Nash equilibria and the convergence time of best response sequences. In particular, we investigate which properties of the strategy spaces of individual players ensure a polynomial convergence time ..."
Abstract

Cited by 61 (12 self)
 Add to MetaCart
(Show Context)
We study the impact of combinatorial structure in congestion games on the complexity of computing pure Nash equilibria and the convergence time of best response sequences. In particular, we investigate which properties of the strategy spaces of individual players ensure a polynomial convergence time. We show, if the strategy space of each player consists of the bases of a matroid over the set of resources, then the lengths of all best response sequences are polynomially bounded in the number of players and resources. We can also prove that this result is tight, that is, the matroid property is a necessary and sufficient condition on the players ’ strategy spaces for guaranteeing polynomial time convergence to a Nash equilibrium. In addition, we present an approach that enables us to devise hardness proofs for various kinds of combinatorial games, including first results about the hardness of market sharing games and congestion games for overlay network design. Our approach also yields a short proof for the PLScompleteness of network congestion games. 1
Concise Integer Linear Programming Formulations for Dependency Parsing
, 2009
"... We formulate the problem of nonprojective dependency parsing as a polynomialsized integer linear program. Our formulation is able to handle nonlocal output features in an efficient manner; not only is it compatible with prior knowledge encoded as hard constraints, it can also learn soft constraint ..."
Abstract

Cited by 56 (9 self)
 Add to MetaCart
We formulate the problem of nonprojective dependency parsing as a polynomialsized integer linear program. Our formulation is able to handle nonlocal output features in an efficient manner; not only is it compatible with prior knowledge encoded as hard constraints, it can also learn soft constraints from data. In particular, our model is able to learn correlations among neighboring arcs (siblings and grandparents), word valency, and tendencies toward nearlyprojective parses. The model parameters are learned in a maxmargin framework by employing a linear programming relaxation. We evaluate the performance of our parser on data in several natural languages, achieving improvements over existing stateoftheart methods.
Approximation algorithms for nonuniform buyatbulk network design problems
 Proc. of IEEE FOCS
"... Abstract. Buyatbulk network design problems arise in settings where the costs for purchasing or installing equipment exhibit economies of scale. The objective is to build a network of cheapest cost to support a given multicommodity flow demand between node pairs. We present approximation algorith ..."
Abstract

Cited by 56 (13 self)
 Add to MetaCart
(Show Context)
Abstract. Buyatbulk network design problems arise in settings where the costs for purchasing or installing equipment exhibit economies of scale. The objective is to build a network of cheapest cost to support a given multicommodity flow demand between node pairs. We present approximation algorithms for buyatbulk network design problems with costs on both edges and nodes of an undirected graph. Our main result is the first polylogarithmic approximation ratio for the nonuniform problem that allows different cost functions on each edge and node; the ratio we achieve is O(log4 h) where h is the number of demand pairs. In addition we present an O(log h) approximation for the single sink problem. Polylogarithmic ratios for some related problems are also obtained. Our algorithm for the multicommodity problem is obtained via a reduction to the single source problem using the notion of junction trees. We believe that this presents a simple yet useful general technique for network design problems. Key words. Nonuniform buyatbulk, network design, approximation algorithm, concave cost, network flow, economies of scale AMS subject classifications. 68Q25, 68W25, 90C27, 90C59 1. Introduction. Network
FemtoCaching: Wireless Video Content Delivery through Distributed Caching Helpers,” submitted for publication, available on http://arxiv.org/pdf/1109.4179v1
"... Abstract—We suggest a novel approach to handle the ongoing explosive increase in the demand for video content in mobile devices. We envision femtocelllike base stations, which we call helpers, with weak backhaul links but large storage capabilities. These helpers form a wireless distributed caching ..."
Abstract

Cited by 56 (9 self)
 Add to MetaCart
Abstract—We suggest a novel approach to handle the ongoing explosive increase in the demand for video content in mobile devices. We envision femtocelllike base stations, which we call helpers, with weak backhaul links but large storage capabilities. These helpers form a wireless distributed caching network that assists the macro base station by handling requests of popular files that have been cached. We formalize the wireless distributed caching optimization problem for the case that files are encoded using fountain/MDS codes. We express the problem as a convex optimization. By adding additional variables we reduce it to a linear program. On the practical side, we present a detailed simulation of a university campus scenario covered by a single 3GPP LTE R8 cell and several helper nodes using a simplified 802.11n protocol. We use a real campus trace of video requests and show how distributed caching can increase the number of served users by as much as 600 − 700%. I.
Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds
, 2012
"... We solve a 20year old problem posed by Yannakakis and prove that there exists no polynomialsize linear program (LP) whose associated polytope projects to the traveling salesman polytope, even if the LP is not required to be symmetric. Moreover, we prove that this holds also for the cut polytope an ..."
Abstract

Cited by 54 (13 self)
 Add to MetaCart
We solve a 20year old problem posed by Yannakakis and prove that there exists no polynomialsize linear program (LP) whose associated polytope projects to the traveling salesman polytope, even if the LP is not required to be symmetric. Moreover, we prove that this holds also for the cut polytope and the stable set polytope. These results were discovered through a new connection that we make between oneway quantum communication protocols and semidefinite programming reformulations of LPs.