Results 1 -
4 of
4
FINDSITE(comb): A threading/structure-based, proteomic-scale virtual ligand screening approach
- J. Chem. Inf. Model. 2013
"... ABSTRACT: Virtual ligand screening is an integral part of the modern drug discovery process. Traditional ligand-based, virtual screening approaches are fast but require a set of structurally diverse ligands known to bind to the target. Traditional structure-based approaches require high-resolution t ..."
Abstract
-
Cited by 5 (2 self)
- Add to MetaCart
ABSTRACT: Virtual ligand screening is an integral part of the modern drug discovery process. Traditional ligand-based, virtual screening approaches are fast but require a set of structurally diverse ligands known to bind to the target. Traditional structure-based approaches require high-resolution target protein structures and are computationally demanding. In contrast, the recently developed threading/structure-based FINDSITE-based approaches have the advantage that they are as fast as traditional ligand-based approaches and yet overcome the limitations of traditional ligand- or structure-based approaches. These new methods can use predicted low-resolution structures and infer the likelihood of a ligand binding to a target by utilizing ligand information excised from the target’s remote or close homologous proteins and/or libraries of ligand binding databases. Here, we develop an improved version of FINDSITE, FINDSITEfilt, that filters out false positive ligands in threading identified templates by a better binding site detection
Comparative Modeling: The State of the Art and Protein Drug Target Structure Prediction
"... Abstract: The goal of computational protein structure prediction is to provide three-dimensional (3D) structures with resolution comparable to experimental results. Comparative modeling, which predicts the 3D structure of a protein based on its sequence similarity to homologous structures, is the mo ..."
Abstract
-
Cited by 5 (0 self)
- Add to MetaCart
(Show Context)
Abstract: The goal of computational protein structure prediction is to provide three-dimensional (3D) structures with resolution comparable to experimental results. Comparative modeling, which predicts the 3D structure of a protein based on its sequence similarity to homologous structures, is the most accurate computational method for structure prediction. In the last two decades, significant progress has been made on comparative modeling methods. Using the large number of protein structures deposited in the Protein Data Bank (~65,000), automatic prediction pipelines are generating a tremendous number of models (~1.9 million) for sequences whose structures have not been experimentally determined. Accurate models are suitable for a wide range of applications, such as prediction of protein binding sites, prediction of the effect of protein mutations, and structure-guided virtual screening. In particular, comparative modeling has enabled structure-based drug design against protein targets with unknown structures. In this review, we describe the theoretical basis of comparative modeling, the available automatic methods and databases, and the algorithms to evaluate the accuracy of predicted structures. Finally, we discuss relevant applications in the prediction of important drug target proteins, focusing on the G protein-coupled receptor (GPCR) and protein kinase families.
Kinome-wide Activity Modeling from Diverse Public High-Quality Data Sets
"... ABSTRACT: Large corpora of kinase small molecule inhibitor data are accessible to public sector research from thousands of journal article and patent publications. These data have been generated employing a wide variety of assay methodologies and experimental procedures by numerous laboratories. Her ..."
Abstract
-
Cited by 2 (1 self)
- Add to MetaCart
ABSTRACT: Large corpora of kinase small molecule inhibitor data are accessible to public sector research from thousands of journal article and patent publications. These data have been generated employing a wide variety of assay methodologies and experimental procedures by numerous laboratories. Here we ask the question how applicable these heterogeneous data sets are to predict kinase activities and which characteristics of the data sets contribute to their utility. We accessed almost 500 000 molecules from the Kinase Knowledge Base (KKB) and after rigorous aggregation and standardization generated over 180 distinct data sets covering all major groups of the human kinome. To assess the value of the data sets, we generated hundreds of classification and regression models. Their rigorous cross-validation and characterization demonstrated highly predictive classification and quantitative models for the majority of kinase targets if a minimum required number of active compounds or structure−activity data points were available. We then applied the best classifiers to compounds most recently profiled in the NIH Library of Integrated Network-based Cellular Signatures (LINCS) program and found good agreement of profiling results with predicted activities. Our results indicate that, although heterogeneous in nature, the publically accessible data sets are exceedingly valuable and well suited to develop highly accurate predictors for practical Kinome-wide virtual screening applications and to complement experimental kinase profiling. Over 500 human protein kinases1
A Simulation Study for the Distribution Law of Relative Moments of Evolution
, 2012
"... Nine selection-survival strategies were implemented in a genetic algorithm experiment, and differences in terms of evolution were assessed. The moments of evolution (expressed as generation numbers) were recorded in a contingency of three strategies (i.e., proportional, tournament, and deterministic ..."
Abstract
-
Cited by 1 (1 self)
- Add to MetaCart
Nine selection-survival strategies were implemented in a genetic algorithm experiment, and differences in terms of evolution were assessed. The moments of evolution (expressed as generation numbers) were recorded in a contingency of three strategies (i.e., proportional, tournament, and deterministic) for two moments (i.e., selection for crossover and mutation and survival for replacement). The experiment was conducted for the first 20,000 generations in 46 independent runs. The relative moments of evolution (where evolution was defined as a significant increase in the determination coefficient relative to the previous generation) when any selectionsurvival strategy was used fit a Log-Pearson type III distribution. Moreover, when distributions were compared to one another, functional relationships were identified between the population parameters, revealing a degeneration of the Log-Pearson type III distribution in a one-parametrical distribution that can be assigned to the chosen variable—evolution strategy. The obtained theoretical population distribution allowed comparison of the selection-survival strategies that were used. Ó 2012 Wiley Periodicals, Inc. Complexity 17: 52 63, 2012 Key Words: genetic algorithm; evolution; molecular descriptors family; quantitative structureactivity relationship; multivariate linear regression