Results 1 - 10
of
1,420
An Introduction to Biometric Recognition,
- IEEE Transactions on Circuit and Sytems for Video Technology, Special Issue on Image- and Video-Based Biometrics,
, 2004
"... ..."
(Show Context)
Information fusion in biometrics
- Pattern Recognition Letters
, 2003
"... User verification systems that use a single biometric indicator often have to contend with noisy sensor data, restricted degrees of freedom, non-universality of the biometric trait and unacceptable error rates. Attempting to improve the performance of individual matchers in such situations may not p ..."
Abstract
-
Cited by 292 (17 self)
- Add to MetaCart
User verification systems that use a single biometric indicator often have to contend with noisy sensor data, restricted degrees of freedom, non-universality of the biometric trait and unacceptable error rates. Attempting to improve the performance of individual matchers in such situations may not prove to be effective because of these inherent problems. Multibiometric systems seek to alleviate some of these drawbacks by providing multiple evidences of the same identity. These systems help achieve an increase in performance that may not be possible using a single biometric indicator. Further, multibiometric systems provide anti-spoofing measures by making it difficult for an intruder to spoof multiple biometric traits simultaneously. However, an effective fusion scheme is necessary to combine the information presented by multiple domain experts. This paper addresses the problem of information fusion in biometric verification systems by combining information at the matching score level. Experimental results on combining three biometric modalities (face, fingerprint and hand geometry) are presented.
Enhanced local texture feature sets for face recognition under difficult lighting conditions
- In Proc. AMFG’07
, 2007
"... Abstract. Recognition in uncontrolled situations is one of the most important bottlenecks for practical face recognition systems. We address this by combining the strengths of robust illumination normalization, local texture based face representations and distance transform based matching metrics. S ..."
Abstract
-
Cited by 274 (10 self)
- Add to MetaCart
Abstract. Recognition in uncontrolled situations is one of the most important bottlenecks for practical face recognition systems. We address this by combining the strengths of robust illumination normalization, local texture based face representations and distance transform based matching metrics. Specifically, we make three main contributions: (i) we present a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition; (ii) we introduce Local Ternary Patterns (LTP), a generalization of the Local Binary Pattern (LBP) local texture descriptor that is more discriminant and less sensitive to noise in uniform regions; and (iii) we show that replacing local histogramming with a local distance transform based similarity metric further improves the performance of LBP/LTP based face recognition. The resulting method gives state-of-the-art performance on three popular datasets chosen to test recognition under difficult
Simultaneous Truth and Performance Level Estimation (STAPLE): An Algorithm for the Validation of Image Segmentation
- IEEE TRANS. MED. IMAG
, 2004
"... Characterizing the performance of image segmentation approaches has been a persistent challenge. Performance analysis is important since segmentation algorithms often have limited accuracy and precision. Interactive drawing of the desired segmentation by human raters has often been the only acceptab ..."
Abstract
-
Cited by 250 (21 self)
- Add to MetaCart
(Show Context)
Characterizing the performance of image segmentation approaches has been a persistent challenge. Performance analysis is important since segmentation algorithms often have limited accuracy and precision. Interactive drawing of the desired segmentation by human raters has often been the only acceptable approach, and yet suffers from intrarater and inter-rater variability. Automated algorithms have been sought in order to remove the variability introduced by raters, but such algorithms must be assessed to ensure they are suitable for the task. The performance of raters...
Biometrics: A tool for information security
- IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY
, 2006
"... Establishing identity is becoming critical in our vastly interconnected society. Questions such as “Is she really who she claims to be?, ” “Is this person authorized to use this facility?, ” or “Is he in the watchlist posted by the government? ” are routinely being posed in a variety of scenarios r ..."
Abstract
-
Cited by 182 (4 self)
- Add to MetaCart
(Show Context)
Establishing identity is becoming critical in our vastly interconnected society. Questions such as “Is she really who she claims to be?, ” “Is this person authorized to use this facility?, ” or “Is he in the watchlist posted by the government? ” are routinely being posed in a variety of scenarios ranging from issuing a driver’s license to gaining entry into a country. The need for reliable user authentication techniques has increased in the wake of heightened concerns about security and rapid advancements in networking, communication, and mobility. Biometrics, described as the science of recognizing an individual based on his or her physical or behavioral traits, is beginning to gain acceptance as a legitimate method for determining an individual’s identity. Biometric systems have now been deployed in various commercial, civilian, and forensic applications as a means of establishing identity. In this paper, we provide an overview of biometrics and discuss some of the salient research issues that need to be addressed for making biometric technology an effective tool for providing information security. The primary contribution of this overview includes: 1) examining applications where biometrics can solve issues pertaining to information security; 2) enumerating the fundamental challenges encountered by biometric systems in real-world applications; and 3) discussing solutions to address the problems of scalability and security in large-scale authentication systems.
Recent advances in the automatic recognition of audiovisual speech
- Proceedings of the IEEE
"... Abstract — Visual speech information from the speaker’s mouth region has been successfully shown to improve noise robustness of automatic speech recognizers, thus promising to extend their usability into the human computer interface. In this paper, we review the main components of audio-visual autom ..."
Abstract
-
Cited by 172 (16 self)
- Add to MetaCart
Abstract — Visual speech information from the speaker’s mouth region has been successfully shown to improve noise robustness of automatic speech recognizers, thus promising to extend their usability into the human computer interface. In this paper, we review the main components of audio-visual automatic speech recognition and present novel contributions in two main areas: First, the visual front end design, based on a cascade of linear image transforms of an appropriate video region-of-interest, and subsequently, audio-visual speech integration. On the later topic, we discuss new work on feature and decision fusion combination, the modeling of audio-visual speech asynchrony, and incorporating modality reliability estimates to the bimodal recognition process. We also briefly touch upon the issue of audio-visual speaker adaptation. We apply our algorithms to three multi-subject bimodal databases, ranging from small- to large-vocabulary recognition tasks, recorded at both visually controlled and challenging environments. Our experiments demonstrate that the visual modality improves automatic speech recognition over all conditions and data considered, however less so for visually challenging environments and large vocabulary tasks. Index Terms — Audio-visual speech recognition, speechreading, visual feature extraction, audio-visual fusion, hidden Markov model, multi-stream HMM, product HMM, reliability estimation, adaptation, audio-visual databases. I.
Decision templates for multiple classifier fusion: an experimental comparison
- Pattern Recognition
, 2001
"... Multiple classifier fusion may generate more accurate classification than each of the constituent classifiers. Fusion is often based on fixed combination rules like the product and average. Only under strict probabilistic conditions can these rules be justified. We present here a simple rule for ada ..."
Abstract
-
Cited by 164 (16 self)
- Add to MetaCart
(Show Context)
Multiple classifier fusion may generate more accurate classification than each of the constituent classifiers. Fusion is often based on fixed combination rules like the product and average. Only under strict probabilistic conditions can these rules be justified. We present here a simple rule for adapting the class combiner to the application. c decision templates (one per class) are estimated with the same training set that is used for the set of classifiers. These templates are then matched to the decision profile of new incoming objects by some similarity measure. We compare 11 versions of our model with 14 other techniques for classifier fusion on the Satimage and Phoneme datasets from the database ELENA. Our results show that decision templates based on integral type measures of similarity are superior to the other schemes on both data sets.
Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration
- NEUROIMAGE 46 (2009) 786–802
, 2009
"... ..."
An overview of text-independent speaker recognition: from features to supervectors
, 2009
"... This paper gives an overview of automatic speaker recognition technology, with an emphasis on text-independent recognition. Speaker recognition has been studied actively for several decades. We give an overview of both the classical and the state-of-the-art methods. We start with the fundamentals of ..."
Abstract
-
Cited by 156 (37 self)
- Add to MetaCart
This paper gives an overview of automatic speaker recognition technology, with an emphasis on text-independent recognition. Speaker recognition has been studied actively for several decades. We give an overview of both the classical and the state-of-the-art methods. We start with the fundamentals of automatic speaker recognition, concerning feature extraction and speaker modeling. We elaborate advanced computational techniques to address robustness and session variability. The recent progress from vectors towards supervectors opens up a new area of exploration and represents a technology trend. We also provide an overview of this recent development and discuss the evaluation methodology of speaker recognition systems. We conclude the paper with discussion on future directions.
Social Signal Processing: Survey of an Emerging Domain
, 2008
"... The ability to understand and manage social signals of a person we are communicating with is the core of social intelligence. Social intelligence is a facet of human intelligence that has been argued to be indispensable and perhaps the most important for success in life. This paper argues that next- ..."
Abstract
-
Cited by 153 (32 self)
- Add to MetaCart
The ability to understand and manage social signals of a person we are communicating with is the core of social intelligence. Social intelligence is a facet of human intelligence that has been argued to be indispensable and perhaps the most important for success in life. This paper argues that next-generation computing needs to include the essence of social intelligence – the ability to recognize human social signals and social behaviours like turn taking, politeness, and disagreement – in order to become more effective and more efficient. Although each one of us understands the importance of social signals in everyday life situations, and in spite of recent advances in machine analysis of relevant behavioural cues like blinks, smiles, crossed arms, laughter, and similar, design and development of automated systems for Social Signal Processing (SSP) are rather difficult. This paper surveys the past efforts in solving these problems by a computer, it summarizes the relevant findings in social psychology, and it proposes a set of recommendations for enabling the development of the next generation of socially-aware computing.