Results 1 -
3 of
3
Opcode sequences as representation of executables for data-mining-based unknown malware detection
- INFORMATION SCIENCES 227
, 2013
"... Malware can be defined as any type of malicious code that has the potential to harm a computer or network. The volume of malware is growing faster every year and poses a serious global security threat. Consequently, malware detection has become a critical topic in computer security. Currently, signa ..."
Abstract
-
Cited by 12 (0 self)
- Add to MetaCart
(Show Context)
Malware can be defined as any type of malicious code that has the potential to harm a computer or network. The volume of malware is growing faster every year and poses a serious global security threat. Consequently, malware detection has become a critical topic in computer security. Currently, signature-based detection is the most widespread method used in commercial antivirus. In spite of the broad use of this method, it can detect malware only after the malicious executable has already caused damage and provided the malware is adequately documented. Therefore, the signature-based method consistently fails to detect new malware. In this paper, we propose a new method to detect unknown malware families. This model is based on the frequency of the appearance of opcode sequences. Furthermore, we describe a technique to mine the relevance of each opcode and assess the frequency of each opcode sequence. In addition, we provide empirical validation that this new method is capable of detecting unknown malware.
Malware Characterization using Behavioral Components
"... Abstract. Over the past years, we have experienced an increase in the quantity and complexity of malware binaries. This change has been fueled by the introduction of malware generation tools and reuse of different malcode modules. Recent malware appears to be highly modular and less functionally typ ..."
Abstract
-
Cited by 1 (0 self)
- Add to MetaCart
(Show Context)
Abstract. Over the past years, we have experienced an increase in the quantity and complexity of malware binaries. This change has been fueled by the introduction of malware generation tools and reuse of different malcode modules. Recent malware appears to be highly modular and less functionally typified. A side-effect of this “composition ” of components across different malware types, a growing number of new malware samples cannot be explicitly assigned to traditional classes defined by Anti-Virus (AV) vendors. Indeed, by nature, clustering techniques capture dominant behavior that could be a manifestation of only one of the malware component failing to reveal malware similarities that depend on other, less dominant components and other evolutionary traits. In this paper, we introduce a novel malware behavioral commonality analysis scheme that takes into consideration component-wise grouping, called behavioral mapping. Our effort attempts to shed light to malware behavioral relationships and go beyond simply clustering the malware into a family. To this end, we implemented a method for identifying soft clusters and reveal shared malware components and traits. Using our method, we demonstrate that a malware sample can belong to several groups (clusters), implying sharing of its respective components with other samples from the groups. We performed experiments with a large corpus of real-world malware data-sets and identified that we can successfully highlight malware component relationships across the existing AV malware families and variants.