Results 1  10
of
511
Online Learning with Kernels
, 2003
"... Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the socalled kernel trick with the large margin idea. There has been little u ..."
Abstract

Cited by 2807 (126 self)
 Add to MetaCart
Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the socalled kernel trick with the large margin idea. There has been little use of these methods in an online setting suitable for realtime applications. In this paper we consider online learning in a Reproducing Kernel Hilbert Space. By considering classical stochastic gradient descent within a feature space, and the use of some straightforward tricks, we develop simple and computationally efficient algorithms for a wide range of problems such as classification, regression, and novelty detection. In addition to allowing the exploitation of the kernel trick in an online setting, we examine the value of large margins for classification in the online setting with a drifting target. We derive worst case loss bounds and moreover we show the convergence of the hypothesis to the minimiser of the regularised risk functional. We present some experimental results that support the theory as well as illustrating the power of the new algorithms for online novelty detection. In addition
An introduction to kernelbased learning algorithms
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2001
"... This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and ..."
Abstract

Cited by 589 (54 self)
 Add to MetaCart
This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and
Text Classification using String Kernels
"... We propose a novel approach for categorizing text documents based on the use of a special kernel. The kernel is an inner product in the feature space generated by all subsequences of length k. A subsequence is any ordered sequence of k characters occurring in the text though not necessarily contiguo ..."
Abstract

Cited by 494 (7 self)
 Add to MetaCart
(Show Context)
We propose a novel approach for categorizing text documents based on the use of a special kernel. The kernel is an inner product in the feature space generated by all subsequences of length k. A subsequence is any ordered sequence of k characters occurring in the text though not necessarily contiguously. The subsequences are weighted by anexponentially decaying factor of their full length in the text, hence emphasising those occurrences that are close to contiguous. A direct computation of this feature vector would involve a prohibitive amount of computation even for modest values of k, since the dimension of the feature space grows exponentially with k. The paper describes how despite this fact the inner product can be e ciently evaluated by a dynamic programming technique. Experimental comparisons of the performance of the kernel compared with a standard word feature space kernel Joachims (1998) show positive results on modestly sized datasets. The case of contiguous subsequences is also considered for comparison with the subsequences kernel with di erent decay factors. For larger documents and datasets the paper introduces an approximation technique that is shown to deliver good approximations e ciently for large datasets.
Convolution Kernels for Natural Language
 Advances in Neural Information Processing Systems 14
, 2001
"... We describe the application of kernel methods to Natural Language Processing (NLP) problems. In many NLP tasks the objects being modeled are strings, trees, graphs or other discrete structures which require some mechanism to convert them into feature vectors. We describe kernels for various natural ..."
Abstract

Cited by 335 (7 self)
 Add to MetaCart
(Show Context)
We describe the application of kernel methods to Natural Language Processing (NLP) problems. In many NLP tasks the objects being modeled are strings, trees, graphs or other discrete structures which require some mechanism to convert them into feature vectors. We describe kernels for various natural language structures, allowing rich, high dimensional representations of these structures. We show how a kernel over trees can be applied to parsing using the voted perceptron algorithm, and we give experimental results on the ATIS corpus of parse trees.
New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete Structures, and the Voted Perceptron
, 2002
"... This paper introduces new learning algorithms for natural language processing based on the perceptron algorithm. We show how the algorithms can be efficiently applied to exponential sized representations of parse trees, such as the "all subtrees" (DOP) representation described by (Bod 9 ..."
Abstract

Cited by 272 (6 self)
 Add to MetaCart
This paper introduces new learning algorithms for natural language processing based on the perceptron algorithm. We show how the algorithms can be efficiently applied to exponential sized representations of parse trees, such as the "all subtrees" (DOP) representation described by (Bod 98), or a representation tracking all subfragments of a tagged sentence. We give experimental results showing significant improvements on two tasks: parsing Wall Street Journal text, and namedentity extraction from web data.
Dependency tree kernels for relation extraction
 In Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL04
, 2004
"... We extend previous work on tree kernels to estimate the similarity between the dependency trees of sentences. Using this kernel within a Support Vector Machine, we detect and classify relations between entities in the Automatic Content Extraction (ACE) corpus of news articles. We examine the utility ..."
Abstract

Cited by 254 (2 self)
 Add to MetaCart
(Show Context)
We extend previous work on tree kernels to estimate the similarity between the dependency trees of sentences. Using this kernel within a Support Vector Machine, we detect and classify relations between entities in the Automatic Content Extraction (ACE) corpus of news articles. We examine the utility of different features such as Wordnet hypernyms, parts of speech, and entity types, and find that the dependency tree kernel achieves a 20 % F1 improvement over a “bagofwords ” kernel. 1
A Geometric Framework for Unsupervised Anomaly Detection: Detecting Intrusions in Unlabeled Data
 Applications of Data Mining in Computer Security
, 2002
"... Abstract Most current intrusion detection systems employ signaturebased methods or data miningbased methods which rely on labeled training data. This training data is typically expensive to produce. We present a new geometric framework for unsupervised anomaly detection, which are algorithms that ..."
Abstract

Cited by 232 (9 self)
 Add to MetaCart
(Show Context)
Abstract Most current intrusion detection systems employ signaturebased methods or data miningbased methods which rely on labeled training data. This training data is typically expensive to produce. We present a new geometric framework for unsupervised anomaly detection, which are algorithms that are designed to process unlabeled data. In our framework, data elements are mapped to a feature space which is typically a vector space! d. Anomalies are detected by determining which points lies in sparse
Diffusion kernels on graphs and other discrete input spaces
 in: Proceedings of the 19th International Conference on Machine Learning
, 2002
"... The application of kernelbased learning algorithms has, so far, largely been confined to realvalued data and a few special data types, such as strings. In this paper we propose a general method of constructing natural families of kernels over discrete structures, based on the matrix exponentiation ..."
Abstract

Cited by 225 (7 self)
 Add to MetaCart
(Show Context)
The application of kernelbased learning algorithms has, so far, largely been confined to realvalued data and a few special data types, such as strings. In this paper we propose a general method of constructing natural families of kernels over discrete structures, based on the matrix exponentiation idea. In particular, we focus on generating kernels on graphs, for which we propose a special class of exponential kernels called diffusion kernels, which are based on the heat equation and can be regarded as the discretization of the familiar Gaussian kernel of Euclidean space.
A Generalized Representer Theorem
 In Proceedings of the Annual Conference on Computational Learning Theory
, 2001
"... Wahba's classical representer theorem states that the solutions of certain risk minimization problems involving an empirical risk term and a quadratic regularizer can be written as expansions in terms of the training examples. We generalize the theorem to a larger class of regularizers and ..."
Abstract

Cited by 220 (18 self)
 Add to MetaCart
(Show Context)
Wahba's classical representer theorem states that the solutions of certain risk minimization problems involving an empirical risk term and a quadratic regularizer can be written as expansions in terms of the training examples. We generalize the theorem to a larger class of regularizers and empirical risk terms, and give a selfcontained proof utilizing the feature space associated with a kernel. The result shows that a wide range of problems have optimal solutions that live in the finite dimensional span of the training examples mapped into feature space, thus enabling us to carry out kernel algorithms independent of the (potentially infinite) dimensionality of the feature space.
Kernel Methods for Relation Extraction
, 2002
"... We present an application of kernel methods to extracting relations from unstructured natural language sources. ..."
Abstract

Cited by 215 (0 self)
 Add to MetaCart
We present an application of kernel methods to extracting relations from unstructured natural language sources.