• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

Robustness of the non-Gibbsian property: some examples, (1996)

by A C D van Enter, J Lorinczi
Add To MetaCart

Tools

Sorted by:
Results 11 - 20 of 24
Next 10 →

Measures for lattice systems

by Roberto Fernández , 1998
"... ..."
Abstract - Cited by 8 (4 self) - Add to MetaCart
Abstract not found

The Restriction of the Ising Model to a Layer

by C. Maes, F. Redig, A. Van Moffaert , 1998
"... We discuss the status of recent Gibbsian descriptions of the restriction (projection) of the Ising phases to a layer. We concentrate on the projection of the two-dimensional low temperature Ising phases for which we prove a variational principle. ..."
Abstract - Cited by 8 (7 self) - Add to MetaCart
We discuss the status of recent Gibbsian descriptions of the restriction (projection) of the Ising phases to a layer. We concentrate on the projection of the two-dimensional low temperature Ising phases for which we prove a variational principle.

Two connections between random systems and non-Gibbsian measures

by Aernout C. D. van Enter , Christof Külske , 2008
"... ..."
Abstract - Cited by 8 (3 self) - Add to MetaCart
Abstract not found

Transformations of Gibbs measures

by József Lőrinczi, Christian Maes, Koen Vande Velde , 1998
"... We study local transformations of Gibbs measures. We establish sufficient conditions for the quasilocality of the images and obtain results on the existence and continuity properties of their relative energies. General results are illustrated by simple examples. ..."
Abstract - Cited by 1 (0 self) - Add to MetaCart
We study local transformations of Gibbs measures. We establish sufficient conditions for the quasilocality of the images and obtain results on the existence and continuity properties of their relative energies. General results are illustrated by simple examples.

Renormalizing the renormalization group pathologies

by J Bricmont, A Kupiainen, R Lefevere - Physics Reports 348 5–31 , 2001
"... ..."
Abstract - Cited by 1 (0 self) - Add to MetaCart
Abstract not found

Almost) Gibbsian description of the sign fields of SOS fields

by A C D V Enter , S B Shlosman
"... An example is presented of a measure on a lattice system which has a measure zero set of points (configurations) where some conditional probability can be discontinuous, but does not become a Gibbs measure under decimation (or other) transformations. We also discuss some related issues. ..."
Abstract - Add to MetaCart
An example is presented of a measure on a lattice system which has a measure zero set of points (configurations) where some conditional probability can be discontinuous, but does not become a Gibbs measure under decimation (or other) transformations. We also discuss some related issues.
(Show Context)

Citation Context

...eover, conditioned on this shifted average, the fluctuations in the square around this shifted height n, with high probability are smaller than O(ln N) ([4], Appendix 3, part 2). By choosing for example n = O(N8) , we find that the probability of finding all a-spins to be plus decays not faster than exp{-N1+e}. A weaker version of a similar result has been obtained by J. Lorinczi ([34] and private communication). By similar arguments as in refs. 30, 11, and 53, Section 4.4, it then follows that /u1 cannot be a Gibbs measure; neither can it become so under either deterministic(43) or stochastic(54) renormalization group transformations. 3. THE INTERACTION FOR THE SIGN FIELD Once we know that at ^0-almost all configurations all the conditional probabilities are continuous, we can try and write them in a Gibbsian form for an (almost everywhere convergent) interaction, similarly to what was done by Dobrushin, Maes-Vande Velde, and Bricmont-KupiainenLefevere in different examples. As a side remark we note that one might have an almost surely convergent interaction and at the same time nowhere continuous conditional probabilities; in fact this is the typical situation for infinite-range unbo...

The renormalization-group peculiarities of . . .

by Aernout C. D. van Enter , 1998
"... ..."
Abstract - Add to MetaCart
Abstract not found

[1] Non-Gibbsianness of the invariant measures of non-reversible cellular automata with totally asymmetric noise

by Roberto Fernández, André Toom , 2001
"... We present a class of random cellular automata with multiple invariant measures which are all d non-Gibbsian. The automata have configuration space {0,1} Z, with d> 1, and they are noisy versions of automata with the “eroder property”. The noise is totally asymmetric in the sense that it allows r ..."
Abstract - Add to MetaCart
We present a class of random cellular automata with multiple invariant measures which are all d non-Gibbsian. The automata have configuration space {0,1} Z, with d> 1, and they are noisy versions of automata with the “eroder property”. The noise is totally asymmetric in the sense that it allows random flippings of “0 ” into “1 ” but not the converse. We prove that all invariant measures assign to the event “a sphere with a large radius L is filled with ones ” a probability µL that is too large for the measure to be Gibbsian. For example, for the NEC automaton ( − ln µL) ≍ L while for any Gibbs measure the corresponding value is ≍ L2. Key words: Gibbs vs. non-Gibbs measures, cellular automata, invariant measures, non-ergodicity, eroders, convex sets.
(Show Context)

Citation Context

...ures can not be uniformly non-null. More generally, such invariant measures can not be the result of block renormalizations of non-null, in particular Gibbsian, measures. Furthermore, known arguments =-=[7]-=- (briefly reviewed in Section 3 below), imply that if one of these measures is not a product measure, then its non-Gibbsianness is preserved by further single-site renormalization transformations. 2 S...

and

by Aernout C. D. Van Enter, Christof Külske, Alex A. Opoku, Wioletta M. Ruszel , 2008
"... properties for n-vector lattice ..."
Abstract - Add to MetaCart
properties for n-vector lattice
(Show Context)

Citation Context

...sleading, information. Indeed, such limit measures are either product measures, and thus trivially Gibbsian, or nontrivial mixtures of product measures and thus highly non-Gibbsian (see for this fact =-=[7]-=-). 19The notion of Gibbsianness given in Definition 3.1 is equivalent to the one considered in [20, 23] for the corresponding Curie-Weiss model (for which of course one has a simpler single-site spin...

Renormalization Group, Non-Gibbsian states, their relationship and further developments

by Aernout C. D. Van Enter , 2005
"... We review what we have learned about the “Renormalization Group peculiarities ” which were discovered more than twentyfive years ago by Griffiths and Pearce. We discuss which of the questions they asked have been answered and which ones are still widely open. The problems they raised have led to the ..."
Abstract - Add to MetaCart
We review what we have learned about the “Renormalization Group peculiarities ” which were discovered more than twentyfive years ago by Griffiths and Pearce. We discuss which of the questions they asked have been answered and which ones are still widely open. The problems they raised have led to the study of non-Gibbsian states (probability measures). We also mention some further related developments, which find applications in nonequilibrium questions and disordered models.
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University