Results 1  10
of
119
SumProduct Networks: A New Deep Architecture
"... The key limiting factor in graphical model inference and learning is the complexity of the partition function. We thus ask the question: what are general conditions under which the partition function is tractable? The answer leads to a new kind of deep architecture, which we call sumproduct networks ..."
Abstract

Cited by 73 (10 self)
 Add to MetaCart
(Show Context)
The key limiting factor in graphical model inference and learning is the complexity of the partition function. We thus ask the question: what are general conditions under which the partition function is tractable? The answer leads to a new kind of deep architecture, which we call sumproduct networks (SPNs). SPNs are directed acyclic graphs with variables as leaves, sums and products as internal nodes, and weighted edges. We show that if an SPN is complete and consistent it represents the partition function and all marginals of some graphical model, and give semantics to its nodes. Essentially all tractable graphical models can be cast as SPNs, but SPNs are also strictly more general. We then propose learning algorithms for SPNs, based on backpropagation and EM. Experiments show that inference and learning with SPNs can be both faster and more accurate than with standard deep networks. For example, SPNs perform image completion better than stateoftheart deep networks for this task. SPNs also have intriguing potential connections to the architecture of the cortex. 1
Probabilistic Theorem Proving
"... Many representation schemes combining firstorder logic and probability have been proposed in recent years. Progress in unifying logical and probabilistic inference has been slower. Existing methods are mainly variants of lifted variable elimination and belief propagation, neither of which take logic ..."
Abstract

Cited by 70 (23 self)
 Add to MetaCart
(Show Context)
Many representation schemes combining firstorder logic and probability have been proposed in recent years. Progress in unifying logical and probabilistic inference has been slower. Existing methods are mainly variants of lifted variable elimination and belief propagation, neither of which take logical structure into account. We propose the first method that has the full power of both graphical model inference and firstorder theorem proving (in finite domains with Herbrand interpretations). We first define probabilistic theorem proving, their generalization, as the problem of computing the probability of a logical formula given the probabilities or weights of a set of formulas. We then show how this can be reduced to the problem of lifted weighted model counting, and develop an efficient algorithm for the latter. We prove the correctness of this algorithm, investigate its properties, and show how it generalizes previous approaches. Experiments show that it greatly outperforms lifted variable elimination when logical structure is present. Finally, we propose an algorithm for approximate probabilistic theorem proving, and show that it can greatly outperform lifted belief propagation. 1
Unsupervised Learning of a Probabilistic Grammar for Object Detection and Parsing
 in Advances in Neural Information Processing Systems 19
, 2007
"... We introduce a Probabilistic GrammarMarkov Model (PGMM) which couples probabilistic context free grammars and Markov Random Fields. These PGMMs are generative models defined over attributed features and are used to detect and classify objects in natural images. PGMMs are designed so that they can p ..."
Abstract

Cited by 49 (13 self)
 Add to MetaCart
(Show Context)
We introduce a Probabilistic GrammarMarkov Model (PGMM) which couples probabilistic context free grammars and Markov Random Fields. These PGMMs are generative models defined over attributed features and are used to detect and classify objects in natural images. PGMMs are designed so that they can perform rapid inference, parameter learning, and the more difficult task of structure induction. PGMMs can deal with unknown 2D pose (position, orientation, and scale) in both inference and learning, different appearances, or aspects, of the model. The PGMMs can be learnt in an unsupervised manner where the image can contain one of an unknown number of objects of different categories or even be pure background. We first study the weakly supervised case, where each image contains an example of the (single) object of interest, and then generalize to less supervised cases. The goal of this paper is theoretical but, to provide proof of concept, we demonstrate results from this approach on a subset of the Caltech dataset (learning on a training set and evaluating on a testing set). Our results are generally comparable with the current state of the art, and our inference is performed in less than five seconds.
Mdpop: Faithful distributed implementation of efficient social choice problems
 In AAMAS’06  Autonomous Agents and Multiagent Systems
, 2006
"... In the efficient social choice problem, the goal is to assign values, subject to side constraints, to a set of variables to maximize the total utility across a population of agents, where each agent has private information about its utility function. In this paper we model the social choice problem ..."
Abstract

Cited by 48 (17 self)
 Add to MetaCart
(Show Context)
In the efficient social choice problem, the goal is to assign values, subject to side constraints, to a set of variables to maximize the total utility across a population of agents, where each agent has private information about its utility function. In this paper we model the social choice problem as a distributed constraint optimization problem (DCOP), in which each agent can communicate with other agents that share an interest in one or more variables. Whereas existing DCOP algorithms can be easily manipulated by an agent, either by misreporting private information or deviating from the algorithm, we introduce MDPOP, the first DCOP algorithm that provides a faithful distributed implementation for efficient social choice. This provides a concrete example of how the methods of mechanism design can be unified with those of distributed optimization. Faithfulness ensures that no agent can benefit by unilaterally deviating from any aspect of the protocol, neither informationrevelation, computation, nor communication, and whatever the private information of other agents. We allow for payments by agents to a central bank, which is the only central authority that we require. To achieve faithfulness, we carefully integrate the VickreyClarkeGroves (VCG) mechanism with the DPOP algorithm, such that each agent is only asked to perform computation, report
On probabilistic inference by weighted model counting
 Artificial Intelligence
"... A recent and effective approach to probabilistic inference calls for reducing the problem to one of weighted model counting (WMC) on a propositional knowledge base. Specifically, the approach calls for encoding the probabilistic model, typically a Bayesian network, as a propositional knowledge base ..."
Abstract

Cited by 48 (5 self)
 Add to MetaCart
(Show Context)
A recent and effective approach to probabilistic inference calls for reducing the problem to one of weighted model counting (WMC) on a propositional knowledge base. Specifically, the approach calls for encoding the probabilistic model, typically a Bayesian network, as a propositional knowledge base in conjunctive normal form (CNF) with weights associated to each model according to the network parameters. Given this CNF, computing the probability of some evidence becomes a matter of summing the weights of all CNF models consistent with the evidence. A number of variations on this approach have appeared in the literature recently, that vary across three orthogonal dimensions. The first dimension concerns the specific encoding used to convert a Bayesian network into a CNF. The second dimensions relates to whether weighted model counting is performed using a search algorithm on the CNF, or by compiling the CNF into a structure that renders WMC a polytime operation in the size of the compiled structure. The third dimension deals with the specific properties of network parameters (local structure) which are captured in the CNF encoding. In this paper, we discuss recent work in this area across the above three dimensions, and demonstrate empirically its practical importance in significantly expanding the reach of exact probabilistic inference. We restrict our discussion to exact inference and model counting, even though other proposals have been extended for approximate inference and approximate model counting.
Casefactor diagrams for structured probabilistic modeling
 In Proceedings of the Twentieth Conference on Uncertainty in Artificial Intelligence (UAI’04
, 2004
"... We introduce a probabilistic formalism subsuming Markov random fields of bounded tree width and probabilistic context free grammars. Our models are based on a representation of Boolean formulas that we call casefactor diagrams (CFDs). CFDs are similar to binary decision diagrams (BDDs) but are more ..."
Abstract

Cited by 41 (0 self)
 Add to MetaCart
We introduce a probabilistic formalism subsuming Markov random fields of bounded tree width and probabilistic context free grammars. Our models are based on a representation of Boolean formulas that we call casefactor diagrams (CFDs). CFDs are similar to binary decision diagrams (BDDs) but are more concise than BDDs for circuits of bounded tree width and can concisely represent the set of parse trees over a given string under a given context free grammar (unlike BDDs). A probabilistic model consists of a CFD defining a feasible set of Boolean assignments and a weight (or cost) for each individual Boolean variable. We give an insideoutside algorithm for simultaneously computing the marginal of each Boolean variable, and a Viterbi algorithm for finding the minimum cost variable assignment. Both algorithms run in time proportional to the size of the CFD. 1 1
AND/OR branchandbound search for combinatorial optimization in graphical models
, 2008
"... We introduce a new generation of depthfirst BranchandBound algorithms that explore the AND/OR search tree using static and dynamic variable orderings for solving general constraint optimization problems. The virtue of the AND/OR representation of the search space is that its size may be far small ..."
Abstract

Cited by 39 (19 self)
 Add to MetaCart
(Show Context)
We introduce a new generation of depthfirst BranchandBound algorithms that explore the AND/OR search tree using static and dynamic variable orderings for solving general constraint optimization problems. The virtue of the AND/OR representation of the search space is that its size may be far smaller than that of a traditional OR representation, which can translate into significant time savings for search algorithms. The focus of this paper is on linear space search which explores the AND/OR search tree rather than the search graph and therefore make no attempt to cache information. We investigate the power of the minibucket heuristics within the AND/OR search space, in both static and dynamic setups. We focus on two most common optimization problems in graphical models: finding the Most Probable Explanation (MPE) in Bayesian networks and solving Weighted CSPs (WCSP). In extensive empirical evaluations we demonstrate that the new AND/OR BranchandBound approach improves considerably over the traditional OR search strategy and show how various variable ordering schemes impact the performance of the AND/OR search scheme.
Lifted Probabilistic Inference by FirstOrder Knowledge Compilation
 PROCEEDINGS OF THE TWENTYSECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE
, 2011
"... Probabilistic logical languages provide powerful formalisms for knowledge representation and learning. Yet performing inference in these languages is extremely costly, especially if it is done at the propositional level. Lifted inference algorithms, which avoid repeated computation by treating indis ..."
Abstract

Cited by 37 (12 self)
 Add to MetaCart
Probabilistic logical languages provide powerful formalisms for knowledge representation and learning. Yet performing inference in these languages is extremely costly, especially if it is done at the propositional level. Lifted inference algorithms, which avoid repeated computation by treating indistinguishable groups of objects as one, help mitigate this cost. Seeking inspiration from logical inference, where lifted inference (e.g., resolution) is commonly performed, we develop a model theoretic approach to probabilistic lifted inference. Our algorithm compiles a firstorder probabilistic theory into a firstorder deterministic decomposable negation normal form (dDNNF) circuit. Compilation offers the advantage that inference is polynomial in the size of the circuit. Furthermore, by borrowing techniques from the knowledge compilation literature our algorithm effectively exploits the logical structure (e.g., contextspecific independencies) within the firstorder model, which allows more computation to be done at the lifted level. An empirical comparison demonstrates the utility of the proposed approach.
SampleSearch: Importance Sampling in Presence of Determinism
, 2009
"... The paper focuses on developing effective importance sampling algorithms for mixed probabilistic and deterministic graphical models. The use of importance sampling in such graphical models is problematic because it generates many useless zero weight samples which are rejected yielding an inefficient ..."
Abstract

Cited by 36 (4 self)
 Add to MetaCart
The paper focuses on developing effective importance sampling algorithms for mixed probabilistic and deterministic graphical models. The use of importance sampling in such graphical models is problematic because it generates many useless zero weight samples which are rejected yielding an inefficient sampling process. To address this rejection problem, we propose the SampleSearch scheme that augments sampling with systematic constraintbased backtracking search. We characterize the bias introduced by the combination of search with sampling, and derive a weighting scheme which yields an unbiased estimate of the desired statistics (e.g. probability of evidence). When computing the weights exactly is too complex, we propose an approximation which has a weaker guarantee of asymptotic unbiasedness. We present results of an extensive empirical evaluation demonstrating that SampleSearch outperforms other schemes in presence of significant amount of determinism.
Rapid inference on a novel and/or graph for object detection, segmentation and parsing
 in Advances in Neural Information Processing Systems
, 2007
"... In this paper we formulate a novel AND/OR graph representation capable of describing the different configurations of deformable articulated objects such as horses. The representation makes use of the summarization principle so that lower level nodes in the graph only pass on summary statistics to th ..."
Abstract

Cited by 31 (11 self)
 Add to MetaCart
(Show Context)
In this paper we formulate a novel AND/OR graph representation capable of describing the different configurations of deformable articulated objects such as horses. The representation makes use of the summarization principle so that lower level nodes in the graph only pass on summary statistics to the higher level nodes. The probability distributions are invariant to position, orientation, and scale. We develop a novel inference algorithm that combined a bottomup process for proposing configurations for horses together with a topdown process for refining and validating these proposals. The strategy of surround suppression is applied to ensure that the inference time is polynomial in the size of input data. The algorithm was applied to the tasks of detecting, segmenting and parsing horses. We demonstrate that the algorithm is fast and comparable with the state of the art approaches. 1