Results 1 - 10
of
2,228
Moses: Open Source Toolkit for Statistical Machine Translation
- ACL
, 2007
"... We describe an open-source toolkit for statistical machine translation whose novel contributions are (a) support for linguistically motivated factors, (b) confusion network decoding, and (c) efficient data formats for translation models and language models. In addition to the SMT decoder, the toolki ..."
Abstract
-
Cited by 1517 (66 self)
- Add to MetaCart
We describe an open-source toolkit for statistical machine translation whose novel contributions are (a) support for linguistically motivated factors, (b) confusion network decoding, and (c) efficient data formats for translation models and language models. In addition to the SMT decoder, the toolkit also includes a wide variety of tools for training, tuning and applying the system to many translation tasks.
Statistical phrase-based translation
, 2003
"... We propose a new phrase-based translation model and decoding algorithm that enables us to evaluate and compare several, previously proposed phrase-based translation models. Within our framework, we carry out a large number of experiments to understand better and explain why phrase-based models outpe ..."
Abstract
-
Cited by 944 (11 self)
- Add to MetaCart
(Show Context)
We propose a new phrase-based translation model and decoding algorithm that enables us to evaluate and compare several, previously proposed phrase-based translation models. Within our framework, we carry out a large number of experiments to understand better and explain why phrase-based models outperform word-based models. Our empirical results, which hold for all examined language pairs, suggest that the highest levels of performance can be obtained through relatively simple means: heuristic learning of phrase translations from word-based alignments and lexical weighting of phrase translations. Surprisingly, learning phrases longer than three words and learning phrases from high-accuracy wordlevel alignment models does not have a strong impact on performance. Learning only syntactically motivated phrases degrades the performance of our systems. 1
Minimum Error Rate Training in Statistical Machine Translation
, 2003
"... Often, the training procedure for statistical machine translation models is based on maximum likelihood or related criteria. A general problem of this approach is that there is only a loose relation to the final translation quality on unseen text. In this paper, we analyze various training cri ..."
Abstract
-
Cited by 757 (7 self)
- Add to MetaCart
(Show Context)
Often, the training procedure for statistical machine translation models is based on maximum likelihood or related criteria. A general problem of this approach is that there is only a loose relation to the final translation quality on unseen text. In this paper, we analyze various training criteria which directly optimize translation quality.
Hierarchical phrase-based translation
- Computational Linguistics
, 2007
"... We present a statistical machine translation model that uses hierarchical phrases—phrases that contain subphrases. The model is formally a synchronous context-free grammar but is learned from a parallel text without any syntactic annotations. Thus it can be seen as combining fundamental ideas from b ..."
Abstract
-
Cited by 597 (9 self)
- Add to MetaCart
(Show Context)
We present a statistical machine translation model that uses hierarchical phrases—phrases that contain subphrases. The model is formally a synchronous context-free grammar but is learned from a parallel text without any syntactic annotations. Thus it can be seen as combining fundamental ideas from both syntax-based translation and phrase-based translation. We describe our system’s training and decoding methods in detail, and evaluate it for translation speed and translation accuracy. Using BLEU as a metric of translation accuracy, we find that our system performs significantly better than the Alignment Template System, a state-of-the-art phrasebased system. 1.
Discriminative Training and Maximum Entropy Models for Statistical Machine Translation
, 2002
"... We present a framework for statistical machine translation of natural languages based on direct maximum entropy models, which contains the widely used source -channel approach as a special case. All knowledge sources are treated as feature functions, which depend on the source language senten ..."
Abstract
-
Cited by 508 (30 self)
- Add to MetaCart
(Show Context)
We present a framework for statistical machine translation of natural languages based on direct maximum entropy models, which contains the widely used source -channel approach as a special case. All knowledge sources are treated as feature functions, which depend on the source language sentence, the target language sentence and possible hidden variables.
A hierarchical phrase-based model for statistical machine translation
- IN ACL
, 2005
"... We present a statistical phrase-based translation model that uses hierarchical phrases— phrases that contain subphrases. The model is formally a synchronous context-free grammar but is learned from a bitext without any syntactic information. Thus it can be seen as a shift to the formal machinery of ..."
Abstract
-
Cited by 491 (12 self)
- Add to MetaCart
(Show Context)
We present a statistical phrase-based translation model that uses hierarchical phrases— phrases that contain subphrases. The model is formally a synchronous context-free grammar but is learned from a bitext without any syntactic information. Thus it can be seen as a shift to the formal machinery of syntaxbased translation systems without any linguistic commitment. In our experiments using BLEU as a metric, the hierarchical phrasebased model achieves a relative improvement of 7.5 % over Pharaoh, a state-of-the-art phrase-based system.
The Alignment Template Approach to Statistical Machine Translation
, 2004
"... A phrase-based statistical machine translation approach — the alignment template approach — is described. This translation approach allows for general many-to-many relations between words. Thereby, the context of words is taken into account in the translation model, and local changes in word order f ..."
Abstract
-
Cited by 480 (26 self)
- Add to MetaCart
A phrase-based statistical machine translation approach — the alignment template approach — is described. This translation approach allows for general many-to-many relations between words. Thereby, the context of words is taken into account in the translation model, and local changes in word order from source to target language can be learned explicitly. The model is described using a log-linear modeling approach, which is a generalization of the often used source–channel approach. Thereby, the model is easier to extend than classical statistical machine translation systems. We describe in detail the process for learning phrasal translations, the feature functions used, and the search algorithm. The evaluation of this approach is performed on three different tasks. For the German–English speech Verbmobil task, we analyze the effect of various system components. On the French–English Canadian Hansards task, the alignment template system obtains significantly better results than a single-word-based translation model. In the Chinese–English 2002 National Institute of Standards and Technology (NIST) machine translation evaluation it yields statistically significantly better NIST scores than all competing research and commercial translation systems.
Statistical Significance Tests for Machine Translation Evaluation
, 2004
"... If two translation systems differ differ in performance on a test set, can we trust that this indicates a difference in true system quality? To answer this question, we describe bootstrap resampling methods to compute statistical significance of test results, and validate them on the concrete exampl ..."
Abstract
-
Cited by 331 (2 self)
- Add to MetaCart
If two translation systems differ differ in performance on a test set, can we trust that this indicates a difference in true system quality? To answer this question, we describe bootstrap resampling methods to compute statistical significance of test results, and validate them on the concrete example of the BLEU score. Even for small test sizes of only 300 sentences, our methods may give us assurances that test result differences are real.
Learning to Paraphrase: An Unsupervised Approach Using Multiple-Sequence Alignment
, 2003
"... We address the text-to-text generation problem of sentence-level paraphrasing --- a phenomenon distinct from and more difficult than word- or phrase-level paraphrasing. Our approach applies multiple-sequence alignment to sentences gathered from unannotated comparable corpora: it learns a set of para ..."
Abstract
-
Cited by 258 (2 self)
- Add to MetaCart
(Show Context)
We address the text-to-text generation problem of sentence-level paraphrasing --- a phenomenon distinct from and more difficult than word- or phrase-level paraphrasing. Our approach applies multiple-sequence alignment to sentences gathered from unannotated comparable corpora: it learns a set of paraphrasing patterns represented by word lattice pairs and automatically determines how to apply these patterns to rewrite new sentences. The results of our evaluation experiments show that the system derives accurate paraphrases, outperforming baseline systems.
Paraphrasing with Bilingual Parallel Corpora
- In ACL-2005
, 2005
"... Previous work has used monolingual parallel corpora to extract and generate paraphrases. We show that this task can be done using bilingual parallel corpora, a much more commonly available resource. Using alignment techniques from phrasebased statistical machine translation, we show how paraphrases ..."
Abstract
-
Cited by 193 (16 self)
- Add to MetaCart
(Show Context)
Previous work has used monolingual parallel corpora to extract and generate paraphrases. We show that this task can be done using bilingual parallel corpora, a much more commonly available resource. Using alignment techniques from phrasebased statistical machine translation, we show how paraphrases in one language can be identified using a phrase in another language as a pivot. We define a paraphrase probability that allows paraphrases extracted from a bilingual parallel corpus to be ranked using translation probabilities, and show how it can be refined to take contextual information into account. We evaluate our paraphrase extraction and ranking methods using a set of manual word alignments, and contrast the quality with paraphrases extracted from automatic alignments. 1