Results 1  10
of
409
TimeChanged Lévy Processes and Option Pricing
, 2002
"... As is well known, the classic BlackScholes option pricing model assumes that returns follow Brownian motion. It is widely recognized that return processes differ from this benchmark in at least three important ways. First, asset prices jump, leading to nonnormal return innovations. Second, return ..."
Abstract

Cited by 189 (23 self)
 Add to MetaCart
As is well known, the classic BlackScholes option pricing model assumes that returns follow Brownian motion. It is widely recognized that return processes differ from this benchmark in at least three important ways. First, asset prices jump, leading to nonnormal return innovations. Second, return volatilities vary stochastically over time. Third, returns and their volatilities are correlated, often negatively for equities. We propose that timechanged Lévy processes be used to simultaneously address these three facets of the underlying asset return process. We show that our framework encompasses almost all of the models proposed in the option pricing literature. Despite the generality of our approach, we show that it is straightforward to select and test a particular option pricing model through the use of characteristic function technology.
Spanning and DerivativeSecurity Valuation
, 1999
"... This paper proposes a methodology for the valuation of contingent securities. In particular, it establishes how the characteristic function (of the future uncertainty) is basis augmenting and spans the payoff universe of most, if not all, derivative assets. In one specific application, from the char ..."
Abstract

Cited by 120 (6 self)
 Add to MetaCart
This paper proposes a methodology for the valuation of contingent securities. In particular, it establishes how the characteristic function (of the future uncertainty) is basis augmenting and spans the payoff universe of most, if not all, derivative assets. In one specific application, from the characteristic function of the stateprice density, it is possible to analytically price options on any arbitrary transformation of the underlying uncertainty. By differentiating (or translating) the characteristic function, limitless pricing and/or spanning opportunities can be designed. As made lucid via example contingent claims, by exploiting the unifying spanning concept, the valuation approach affords substantial analytical tractability. The strength and versatility of the methodology is inherent when valuing (1) Averageinterest options; (2) Correlation options; and (3) Discretelymonitored knockout options. For each optionlike security, the characteristic function is strikingly simple (although the corresponding density is unmanageable/indeterminate). This article provides the economic foundations for valuing derivative securities.
The Finite Moment Log Stable Process and Option Pricing
, 2002
"... We document a surprising pattern in market prices of S&P 500 index options. When implied volatilities are graphed against a standard measure of moneyness, the implied volatility smirk does not flatten out as maturity increases up to the observable horizon of two years. This behavior contrasts sh ..."
Abstract

Cited by 116 (13 self)
 Add to MetaCart
We document a surprising pattern in market prices of S&P 500 index options. When implied volatilities are graphed against a standard measure of moneyness, the implied volatility smirk does not flatten out as maturity increases up to the observable horizon of two years. This behavior contrasts sharply with the implications of many pricing models and with the asymptotic behavior implied by the central limit theorem (CLT). We develop a parsimonious model which deliberately violates the CLT assumptions and thus captures the observed behavior of the volatility smirk over the maturity horizon. Calibration exercises demonstrate its superior performance against several widely used alternatives.
Maximum likelihood estimation for stochastic volatility models
 JOURNAL OF FINANCIAL ECONOMICS
, 2007
"... We develop and implement a method for maximum likelihood estimation in closedform of stochastic volatility models. Using Monte Carlo simulations, we compare a full likelihood procedure, where an option price is inverted into the unobservable volatility state, to an approximate likelihood procedure ..."
Abstract

Cited by 113 (3 self)
 Add to MetaCart
We develop and implement a method for maximum likelihood estimation in closedform of stochastic volatility models. Using Monte Carlo simulations, we compare a full likelihood procedure, where an option price is inverted into the unobservable volatility state, to an approximate likelihood procedure where the volatility state is replaced by proxies based on the implied volatility of a shortdated atthemoney option. The approximation results in a small loss of accuracy relative to the standard errors due to sampling noise. We apply this method to market prices of index options for several stochastic volatility models, and compare the characteristics of the estimated models. The evidence for a general CEV model, which nests both the affine Heston model and a GARCH model, suggests that the elasticity of variance of volatility lies between that assumed by the two nested models.
Option Pricing by Transform Methods: Extensions, Unification, and Error Control
 Journal of Computational Finance
"... We extend and unify Fourieranalytic methods for pricing a wide class of options on any underlying state variable whose characteristic function is known. In this general setting, we bound the numerical pricing error of discretized transform computations, such as DFT/FFT. These bounds enable algorith ..."
Abstract

Cited by 89 (6 self)
 Add to MetaCart
We extend and unify Fourieranalytic methods for pricing a wide class of options on any underlying state variable whose characteristic function is known. In this general setting, we bound the numerical pricing error of discretized transform computations, such as DFT/FFT. These bounds enable algorithms to select efficient quadrature parameters and to price with guaranteed numerical accuracy.
A Simple Option Formula for General JumpDiffusion and Other Exponential Levy Processes
 Other Exponential Lévy Processes,” Environ Financial Systems and OptionCity.net
, 2001
"... Option values are wellknown to be the integral of a discounted transition density times a payoff function; this is just martingale pricing. It's usually done in 'Sspace', where S is the terminal security price. But, for L6vy processes the Sspace transition densities are often very ..."
Abstract

Cited by 89 (2 self)
 Add to MetaCart
Option values are wellknown to be the integral of a discounted transition density times a payoff function; this is just martingale pricing. It's usually done in 'Sspace', where S is the terminal security price. But, for L6vy processes the Sspace transition densities are often very complicated, involving many special functions and infinite summations. Instead, we show that it's much easier to compute the option value as an integral in Fourier space  and interpret this as a Parseval identity. The formula is especially simple because (i) it's a single integration for any payoff and (ii) the integrand is typically a compact expressions with just elementary functions. Our approach clarifies and generalizes previous work using characteristic functions and Fourier inversions. For example, we show how the residue calculus leads to several variation formulas, such as a wellknown, but less numerically efficient, 'BlackScholes style' formula for call options. The result applies to any Europeanstyle, simple or exotic option (without pathdependence) under any L6vy process with a known characteristic function.
What Type of Process Underlies Options? A Simple Robust Test
, 2002
"... We develop a simple robust test for the presence of continuous and discontinuous (jump) components in the price of an asset underlying an option. Our test examines the prices of atthemoney and outofthemoney options as the option maturity approaches zero. We show that these prices converge to ze ..."
Abstract

Cited by 83 (8 self)
 Add to MetaCart
We develop a simple robust test for the presence of continuous and discontinuous (jump) components in the price of an asset underlying an option. Our test examines the prices of atthemoney and outofthemoney options as the option maturity approaches zero. We show that these prices converge to zero at speeds which depend upon whether the sample path of the underlying asset price process is purely continuous, purely discontinuous, or a mixture of both. By applying the test to S&P 500 index options data, we conclude that the sample path behavior of this index contains both a continuous component and a jump component. In particular, we find that while the presence of the jump component varies strongly over time, the presence of the continuous component is constantly felt. We investigate the implications of the evidence for parametric model specifications.
Lévy Processes in Finance: Theory, Numerics, and Empirical Facts
, 2000
"... Lévy processes are an excellent tool for modelling price processes in mathematical finance. On the one hand, they are very flexible, since for any time increment ∆t any infinitely divisible distribution can be chosen as the increment distribution over periods of time ∆t. On the other hand, they have ..."
Abstract

Cited by 81 (2 self)
 Add to MetaCart
Lévy processes are an excellent tool for modelling price processes in mathematical finance. On the one hand, they are very flexible, since for any time increment ∆t any infinitely divisible distribution can be chosen as the increment distribution over periods of time ∆t. On the other hand, they have a simple structure in comparison with general semimartingales. Thus stochastic models based on Lévy processes often allow for analytically or numerically tractable formulas. This is a key factor for practical applications. This thesis is divided into two parts. The first, consisting of Chapters 1, 2, and 3, is devoted to the study of stock price models involving exponential Lévy processes. In the second part, we study term structure models driven by Lévy processes. This part is a continuation of the research that started with the author's diploma thesis Raible (1996) and the article Eberlein and Raible (1999). The content of the chapters is as follows. In Chapter 1, we study a general stock price model where the price of a single stock follows an exponential Lévy process. Chapter 2 is devoted to the study of the Lévy measure of infinitely divisible distributions, in particular of generalized hyperbolic distributions. This yields information about what changes in the distribution of a generalized hyperbolic Lévy motion can be achieved by a locally equivalent change of the underlying probability measure. Implications for