Results 1  10
of
325
An Ensemble Adjustment Kalman Filter for Data Assimilation
, 2001
"... A theory for estimating the probability distribution of the state of a model given a set of observations exists. This nonlinear ..."
Abstract

Cited by 295 (13 self)
 Add to MetaCart
A theory for estimating the probability distribution of the state of a model given a set of observations exists. This nonlinear
Ensemble Data Assimilation without Perturbed Observations
 MON. WEA. REV
, 2002
"... The ensemble Kalman filter (EnKF) is a data assimilation scheme based on the traditional Kalman filter update equation. An ensemble of forecasts are used to estimate the backgrounderror covariances needed to compute the Kalman gain. It is known that if the same observations and the same gain are ..."
Abstract

Cited by 287 (21 self)
 Add to MetaCart
The ensemble Kalman filter (EnKF) is a data assimilation scheme based on the traditional Kalman filter update equation. An ensemble of forecasts are used to estimate the backgrounderror covariances needed to compute the Kalman gain. It is known that if the same observations and the same gain are used to update each member of the ensemble, the ensemble will systematically underestimate analysiserror covariances. This will cause a degradation of subsequent analyses and may lead to filter divergence. For large ensembles, it is known that this problem can be alleviated by treating the observations as random variables, adding random perturbations to them with the correct statistics. Two important
Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter
 Physica D
, 2007
"... Data assimilation is an iterative approach to the problem of estimating the state of a dynamical system using both current and past observations of the system together with a model for the system’s time evolution. Rather than solving the problem from scratch each time new observations become availab ..."
Abstract

Cited by 152 (11 self)
 Add to MetaCart
Data assimilation is an iterative approach to the problem of estimating the state of a dynamical system using both current and past observations of the system together with a model for the system’s time evolution. Rather than solving the problem from scratch each time new observations become available, one uses the model to “forecast ” the current state, using a prior state estimate (which incorporates information from past data) as the initial condition, then uses current data to correct the prior forecast to a current state estimate. This Bayesian approach is most effective when the uncertainty in both the observations and in the state estimate, as it evolves over time, are accurately quantified. In this article, I describe a practical method for data assimilation in large, spatiotemporally chaotic systems. The method is a type of “Ensemble Kalman Filter”, in which the state estimate and its approximate uncertainty are represented at any given time by an ensemble of system states. I discuss both the mathematical basis of this approach and its implementation; my primary emphasis is on ease of use and computational speed rather than improving accuracy over previously published approaches to ensemble Kalman filtering. 1
Ensemble Kalman Filter Assimilation of Doppler Radar Data with a Compressible Nonhydrostatic Model: OSS Experiments
, 2004
"... A Doppler radar data assimilation system is developed based on ensemble Kalman filter (EnKF) method and tested with simulated radar data from a supercell storm. As a first implementation, we assume the forward models are perfect and radar data are sampled at the analysis grid points. A general pur ..."
Abstract

Cited by 130 (79 self)
 Add to MetaCart
A Doppler radar data assimilation system is developed based on ensemble Kalman filter (EnKF) method and tested with simulated radar data from a supercell storm. As a first implementation, we assume the forward models are perfect and radar data are sampled at the analysis grid points. A general purpose nonhydrostatic compressible model is used with the inclusion of complex multiclass ice microphysics. New aspects compared to previous studies include the demonstration of the ability of EnKF method in retrieving multiple microphysical species associated with a multiclass ice microphysics scheme, and in accurately retrieving the wind and thermodynamic variables. Also new are the inclusion of reflectivity observations and the determination of the relative role of radial velocity and reflectivity data as well as their spatial coverage in recovering the full flow and cloud fields. In general, the system is able to reestablish the model storm extremely well after a number of assimilation cycles, and best results are obtained when both radial velocity and reflectivity data, including reflectivity information outside precipitation regions, are used. Significant positive impact of the reflectivity assimilation
Ensemble Square Root Filters
, 2003
"... Ensemble data assimilation methods assimilate observations using statespace estimation methods and lowrank representations of forecast and analysis error covariances. A key element of such methods is the transformation of the forecast ensemble into an analysis ensemble with appropriate statistics ..."
Abstract

Cited by 120 (8 self)
 Add to MetaCart
Ensemble data assimilation methods assimilate observations using statespace estimation methods and lowrank representations of forecast and analysis error covariances. A key element of such methods is the transformation of the forecast ensemble into an analysis ensemble with appropriate statistics. This transformation may be performed stochastically by treating observations as random variables, or deterministically by requiring that the updated analysis perturbations satisfy the Kalman filter analysis error covariance equation. Deterministic analysis ensemble updates are implementations of Kalman square root filters. The nonuniqueness of the deterministic transformation used in square root Kalman filters provides a framework to compare three recently proposed ensemble data assimilation methods.
A Local Least Squares Framework for Ensemble Filtering
, 2003
"... Many methods using ensemble integrations of prediction models as integral parts of data assimilation have appeared in the atmospheric and oceanic literature. In general, these methods have been derived from the Kalman filter and have been known as ensemble Kalman filters. A more general class of m ..."
Abstract

Cited by 89 (9 self)
 Add to MetaCart
Many methods using ensemble integrations of prediction models as integral parts of data assimilation have appeared in the atmospheric and oceanic literature. In general, these methods have been derived from the Kalman filter and have been known as ensemble Kalman filters. A more general class of methods including these ensemble Kalman filter methods is derived starting from the nonlinear filtering problem. When working in a joint state observation space, many features of ensemble filtering algorithms are easier to derive and compare. The ensemble filter methods derived here make a (local) least squares assumption about the relation between prior distributions of an observation variable and model state variables. In this context, the update procedure applied when a new observation becomes available can be described in two parts. First, an update increment is computed for each prior ensemble estimate of the observation variable by applying a scalar ensemble filter. Second, a linear regression of the prior ensemble sample of each state variable on the observation variable is performed to compute update increments for each state variable ensemble member from corresponding observation variable increments. The regression can be applied globally or locally using Gaussian kernel methods.
Sampling strategies and square root analysis schemes for the EnKF
"... this paper is to examine how different sampling strategies and implementations of the analysis scheme influence the quality of the results in the EnKF. It is shown that by selecting the initial ensemble, the model noise and the measurement perturbations wisely, it is possible to achieve a signific ..."
Abstract

Cited by 89 (2 self)
 Add to MetaCart
this paper is to examine how different sampling strategies and implementations of the analysis scheme influence the quality of the results in the EnKF. It is shown that by selecting the initial ensemble, the model noise and the measurement perturbations wisely, it is possible to achieve a significant improvement in the EnKF results, using the same number of members in the ensemble
Estimation of highdimensional prior and posterior covariance matrices in Kalman filter variants
 Journal of Multivariate Analysis
, 2007
"... This work studies the effect of using Monte Carlo based methods to estimate highdimensional systems. Recent focus in the geosciences has been on representing the atmospheric state using a probability density function, and, for extremely highdimensional systems, various sample based Kalman filter t ..."
Abstract

Cited by 83 (4 self)
 Add to MetaCart
(Show Context)
This work studies the effect of using Monte Carlo based methods to estimate highdimensional systems. Recent focus in the geosciences has been on representing the atmospheric state using a probability density function, and, for extremely highdimensional systems, various sample based Kalman filter techniques have been developed to address the problem of realtime assimilation of system information and observations. As the employed sample sizes are typically several orders of magnitude smaller than the system dimension, such sampling techniques inevitably induces considerable variability into the state estimate, primarily through prior and posterior sample covariance matrices. In this article we quantify this variability with mean squared error measures for two MonteCarlo based Kalman filter variants, the ensemble Kalman filter and the squareroot filter. Under weak assumptions, we derive exact expressions of the error measures. In other cases, we rely on matrix expansions and provide approximations. We show that covarianceshrinking (tapering) based on the Schur product of the prior sample covariance matrix and a positive definite function is a simple, computationally feasible, and very effective technique to reduce sample variability and to address rankdeficient sample covariances. We propose practical rules for obtaining optimally tapered sample covariance matrices. The theoretical results are verified and illustrated with extensive simulations.
The Maximum Likelihood Ensemble Filter as a . . .
, 2008
"... The Maximum Likelihood Ensemble Filter (MLEF) equations are derived without the differentiability requirement for the prediction model and for the observation operators. Derivation reveals that a new nondifferentiable minimization method can be defined as a generalization of the gradientbased un ..."
Abstract

Cited by 68 (18 self)
 Add to MetaCart
The Maximum Likelihood Ensemble Filter (MLEF) equations are derived without the differentiability requirement for the prediction model and for the observation operators. Derivation reveals that a new nondifferentiable minimization method can be defined as a generalization of the gradientbased unconstrained methods, such as the preconditioned conjugategradient and quasiNewton methods. In the new minimization algorithm the vector of first order increments of the cost function is defined as a generalized gradient, while the symmetric matrix of second order increments of the cost function is defined as a generalized Hessian matrix. In the case of differentiable observation operators, the minimization algorithm reduces to the standard gradientbased form. The nondifferentiable aspect of the MLEF algorithm is illustrated in an example with onedimensional Burgers model and simulated observations. The MLEF algorithm has a robust performance, producing satisfactory results for tested nondifferentiable observation operators.