Results 1 - 10
of
1,380
A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.
- In IEEE Workshop on Stereo and Multi-Baseline Vision,
, 2001
"... Abstract Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, two-frame ..."
Abstract
-
Cited by 1546 (22 self)
- Add to MetaCart
(Show Context)
Abstract Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, two-frame stereo methods. Our taxonomy is designed to assess the different components and design decisions made in individual stereo algorithms. Using this taxonomy, we compare existing stereo methods and present experiments evaluating the performance of many different variants. In order to establish a common software platform and a collection of data sets for easy evaluation, we have designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can easily be extended to include new algorithms. We have also produced several new multi-frame stereo data sets with ground truth and are making both the code and data sets available on the Web. Finally, we include a comparative evaluation of a large set of today's best-performing stereo algorithms.
Flexible camera calibration by viewing a plane from unknown orientations
, 1999
"... We propose a flexible new technique to easily calibrate a camera. It only requires the camera to observe a planar pattern shown at a few (at least two) different orientations. Either the camera or the planar pattern can be freely moved. The motion need not be known. Radial lens distortion is modeled ..."
Abstract
-
Cited by 511 (7 self)
- Add to MetaCart
(Show Context)
We propose a flexible new technique to easily calibrate a camera. It only requires the camera to observe a planar pattern shown at a few (at least two) different orientations. Either the camera or the planar pattern can be freely moved. The motion need not be known. Radial lens distortion is modeled. The proposed procedure consists of a closed-form solution, followed by a nonlinear refinement based on the maximum likelihood criterion. Both computer simulation and real data have been used to test the proposed technique, and very good results have been obtained. Compared with classical techniques which use expensive equipment such as two or three orthogonal planes, the proposed technique is easy to use and flexible. It advances 3D computer vision one step from laboratory environments to real world use. The corresponding software is available from the author’s Web page.
A Signal-Processing Framework for Inverse Rendering
- In SIGGRAPH 01
, 2001
"... Realism in computer-generated images requires accurate input models for lighting, textures and BRDFs. One of the best ways of obtaining high-quality data is through measurements of scene attributes from real photographs by inverse rendering. However, inverse rendering methods have been largely limit ..."
Abstract
-
Cited by 248 (21 self)
- Add to MetaCart
Realism in computer-generated images requires accurate input models for lighting, textures and BRDFs. One of the best ways of obtaining high-quality data is through measurements of scene attributes from real photographs by inverse rendering. However, inverse rendering methods have been largely limited to settings with highly controlled lighting. One of the reasons for this is the lack of a coherent mathematical framework for inverse rendering under general illumination conditions. Our main contribution is the introduction of a signal-processing framework which describes the reflected light field as a convolution of the lighting and BRDF, and expresses it mathematically as a product of spherical harmonic coefficients of the BRDF and the lighting. Inverse rendering can then be viewed as deconvolution. We apply this theory to a variety of problems in inverse rendering, explaining a number of previous empirical results. We will show why certain problems are ill-posed or numerically ill-conditioned, and why other problems are more amenable to solution. The theory developed here also leads to new practical representations and algorithms. For instance, we present a method to factor the lighting and BRDF from a small number of views, i.e. to estimate both simultaneously when neither is known.
A Data-Driven Reflectance Model
- ACM TRANSACTIONS ON GRAPHICS
, 2003
"... We present a generative model for isotropic bidirectional reflectance distribution functions (BRDFs) based on acquired reflectance data. Instead of using analytical reflectance models, we represent each BRDF as a dense set of measurements. This allows us to interpolate and extrapolate in the space o ..."
Abstract
-
Cited by 210 (7 self)
- Add to MetaCart
We present a generative model for isotropic bidirectional reflectance distribution functions (BRDFs) based on acquired reflectance data. Instead of using analytical reflectance models, we represent each BRDF as a dense set of measurements. This allows us to interpolate and extrapolate in the space of acquired BRDFs to create new BRDFs. We treat each acquired BRDF as a single high-dimensional vector taken from a space of all possible BRDFs. We apply both linear (subspace) and non-linear (manifold) dimensionality reduction tools in an effort to discover a lowerdimensional representation that characterizes our measurements. We let users define perceptually meaningful parametrization directions to navigate in the reduced-dimension BRDF space. On the low-dimensional manifold, movement along these directions produces novel but valid BRDFs.
3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes
- ACM Transactions on Graphics
, 2004
"... Three-dimensional TV is expected to be the next revolution in the history of television. We implemented a 3D TV prototype system with real-time acquisition, transmission, and 3D display of dynamic scenes. We developed a distributed, scalable architecture to manage the high computation and bandwidth ..."
Abstract
-
Cited by 173 (7 self)
- Add to MetaCart
Three-dimensional TV is expected to be the next revolution in the history of television. We implemented a 3D TV prototype system with real-time acquisition, transmission, and 3D display of dynamic scenes. We developed a distributed, scalable architecture to manage the high computation and bandwidth demands. Our system consists of an array of cameras, clusters of network-connected PCs, and a multi-projector 3D display. Multiple video streams are individually encoded and sent over a broadband network to the display. The 3D display shows high-resolution (1024 × 768) stereoscopic color images for multiple viewpoints without special glasses. We implemented systems with rear-projection and front-projection lenticular screens. In this paper, we provide a detailed overview of our 3D TV system, including an examination of design choices and tradeoffs. We present the calibration and image alignment procedures that are necessary to achieve good image quality. We present qualitative results and some early user feedback. We believe this is the first real-time end-to-end 3D TV system with enough views and resolution to provide a truly immersive 3D experience.
Monocular model-based 3d tracking of rigid objects: A survey
- In Foundations and Trends in Computer Graphics and Vision
, 2005
"... Many applications require tracking of complex 3D objects. These include visual servoing of robotic arms on specific target objects, Aug-mented Reality systems that require real-time registration of the object to be augmented, and head tracking systems that sophisticated inter-faces can use. Computer ..."
Abstract
-
Cited by 142 (4 self)
- Add to MetaCart
(Show Context)
Many applications require tracking of complex 3D objects. These include visual servoing of robotic arms on specific target objects, Aug-mented Reality systems that require real-time registration of the object to be augmented, and head tracking systems that sophisticated inter-faces can use. Computer Vision offers solutions that are cheap, practical and non-invasive. This survey reviews the different techniques and approaches that have been developed by industry and research. First, important math-ematical tools are introduced: Camera representation, robust estima-tion and uncertainty estimation. Then a comprehensive study is given of the numerous approaches developed by the Augmented Reality and Robotics communities, beginning with those that are based on point or planar fiducial marks and moving on to those that avoid the need to engineer the environment by relying on natural features such as edges, texture or interest. Recent advances that avoid manual initialization and failures due to fast motion are also presented. The survery con-cludes with the different possible choices that should be made when implementing a 3D tracking system and a discussion of the future of vision-based 3D tracking. Because it encompasses many computer vision techniques from low-level vision to 3D geometry and includes a comprehensive study of the massive literature on the subject, this survey should be the handbook of the student, the researcher, or the engineer who wants to implement a 3D tracking system. 1
A Real-Time Distributed Light Field Camera
, 2002
"... We present the design and implementation of a real-time, distributed light field camera. Our system allows multiple viewers to navigate virtual cameras in a dynamically changing light field that is captured in real-time. Our light field camera consists of 64 commodity video cameras that are connec ..."
Abstract
-
Cited by 86 (1 self)
- Add to MetaCart
We present the design and implementation of a real-time, distributed light field camera. Our system allows multiple viewers to navigate virtual cameras in a dynamically changing light field that is captured in real-time. Our light field camera consists of 64 commodity video cameras that are connected to off-the-shelf computers. We employ a distributed rendering algorithm that allows us to overcome the data bandwidth problems inherent in dynamic light fields. Our algorithm works by selectively transmitting only those portions of the video streams that contribute to the desired virtual views. This technique not only reduces the total bandwidth, but it also allows us to scale the number of cameras in our system without increasing network bandwidth. We demonstrate our system with a number of examples.