Results 1 - 10
of
781
Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection
, 1997
"... We develop a face recognition algorithm which is insensitive to gross variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take advantage of the observation that the images ..."
Abstract
-
Cited by 2310 (17 self)
- Add to MetaCart
(Show Context)
We develop a face recognition algorithm which is insensitive to gross variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take advantage of the observation that the images of a particular face, under varying illumination but fixed pose, lie in a 3-D linear subspace of the high dimensional image space -- if the face is a Lambertian surface without shadowing. However, since faces are not truly Lambertian surfaces and do indeed produce self-shadowing, images will deviate from this linear subspace. Rather than explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discounts those regions of the face with large deviation. Our projection method is based on Fisher's Linear Discriminant and produces well separated classes in a low-dimensional subspace even under severe variation in lighting and facial expressions. The Eigenface
Face Recognition: A Literature Survey
, 2000
"... ... This paper provides an up-to-date critical survey of still- and video-based face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into ..."
Abstract
-
Cited by 1398 (21 self)
- Add to MetaCart
... This paper provides an up-to-date critical survey of still- and video-based face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into the studies of machine recognition of faces. To provide a comprehensive survey, we not only categorize existing recognition techniques but also present detailed descriptions of representative methods within each category. In addition,
Neural Network-Based Face Detection
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1998
"... We present a neural network-based upright frontal face detection system. A retinally connected neural network examines small windows of an image and decides whether each window contains a face. The system arbitrates between multiple networks to improve performance over a single network. We present ..."
Abstract
-
Cited by 1206 (22 self)
- Add to MetaCart
We present a neural network-based upright frontal face detection system. A retinally connected neural network examines small windows of an image and decides whether each window contains a face. The system arbitrates between multiple networks to improve performance over a single network. We present a straightforward procedure for aligning positive face examples for training. To collect negative examples, we use a bootstrap algorithm, which adds false detections into the training set as training progresses. This eliminates the difficult task of manually selecting nonface training examples, which must be chosen to span the entire space of nonface images. Simple heuristics, such as using the fact that faces rarely overlap in images, can further improve the accuracy. Comparisons with several other state-of-the-art face detection systems are presented, showing that our system has comparable performance in terms of detection and false-positive rates.
Robust face recognition via sparse representation
- IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2008
"... We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models, and argue that new theory from sparse signa ..."
Abstract
-
Cited by 936 (40 self)
- Add to MetaCart
We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models, and argue that new theory from sparse signal representation offers the key to addressing this problem. Based on a sparse representation computed by ℓ 1-minimization, we propose a general classification algorithm for (image-based) object recognition. This new framework provides new insights into two crucial issues in face recognition: feature extraction and robustness to occlusion. For feature extraction, we show that if sparsity in the recognition problem is properly harnessed, the choice of features is no longer critical. What is critical, however, is whether the number of features is sufficiently large and whether the sparse representation is correctly computed. Unconventional features such as downsampled images and random projections perform just as well as conventional features such as Eigenfaces and Laplacianfaces, as long as the dimension of the feature space surpasses certain threshold, predicted by the theory of sparse representation. This framework can handle errors due to occlusion and corruption uniformly, by exploiting the fact that these errors are often sparse w.r.t. to the standard (pixel) basis. The theory of sparse representation helps predict how much occlusion the recognition algorithm can handle and how to choose the training images to maximize robustness to occlusion. We conduct extensive experiments on publicly available databases to verify the efficacy of the proposed algorithm, and corroborate the above claims.
Detecting faces in images: A survey
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2002
"... Images containing faces are essential to intelligent vision-based human computer interaction, and research efforts in face processing include face recognition, face tracking, pose estimation, and expression recognition. However, many reported methods assume that the faces in an image or an image se ..."
Abstract
-
Cited by 839 (4 self)
- Add to MetaCart
(Show Context)
Images containing faces are essential to intelligent vision-based human computer interaction, and research efforts in face processing include face recognition, face tracking, pose estimation, and expression recognition. However, many reported methods assume that the faces in an image or an image sequence have been identified and localized. To build fully automated systems that analyze the information contained in face images, robust and efficient face detection algorithms are required. Given a single image, the goal of face detection is to identify all image regions which contain a face regardless of its three-dimensional position, orientation, and the lighting conditions. Such a problem is challenging because faces are nonrigid and have a high degree of variability in size, shape, color, and texture. Numerous techniques have been developed to detect faces in a single image, and the purpose of this paper is to categorize and evaluate these algorithms. We also discuss relevant issues such as data collection, evaluation metrics, and benchmarking. After analyzing these algorithms and identifying their limitations, we conclude with several promising directions for future research.
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in high-dimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixture-of ..."
Abstract
-
Cited by 699 (15 self)
- Add to MetaCart
We present an unsupervised technique for visual learning which is based on density estimation in high-dimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixture-of-Gaussians model (for multimodal distributions). These probability densities are then used to formulate a maximum-likelihood estimation framework for visual search and target detection for automatic object recognition and coding. Our learning technique is applied to the probabilistic visual modeling, detection, recognition, and coding of human faces and non-rigid objects such as hands.
Face Recognition Based on Fitting a 3D Morphable Model
- IEEE TRANS. PATTERN ANAL. MACH. INTELL
, 2003
"... This paper presents a method for face recognition across variations in pose, ranging from frontal to profile views, and across a wide range of illuminations, including cast shadows and specular reflections. To account for these variations, the algorithm simulates the process of image formation in 3D ..."
Abstract
-
Cited by 551 (19 self)
- Add to MetaCart
(Show Context)
This paper presents a method for face recognition across variations in pose, ranging from frontal to profile views, and across a wide range of illuminations, including cast shadows and specular reflections. To account for these variations, the algorithm simulates the process of image formation in 3D space, using computer graphics, and it estimates 3D shape and texture of faces from single images. The estimate is achieved by fitting a statistical, morphable model of 3D faces to images. The model is learned from a set of textured 3D scans of heads. We describe the construction of the morphable model, an algorithm to fit the model to images, and a framework for face identification. In this framework, faces are represented by model parameters for 3D shape and texture. We present results obtained with 4,488 images from the publicly available CMU-PIE database and 1,940 images from the FERET database.
Photobook: Content-Based Manipulation of Image Databases
, 1995
"... We describe the Photobook system, which is a set of interactive tools for browsing and searching images and image sequences. These query tools differ from those used in standard image databases in that they make direct use of the image content rather than relying on text annotations. Direct search o ..."
Abstract
-
Cited by 542 (0 self)
- Add to MetaCart
We describe the Photobook system, which is a set of interactive tools for browsing and searching images and image sequences. These query tools differ from those used in standard image databases in that they make direct use of the image content rather than relying on text annotations. Direct search on image content is made possible by use of semantics-preserving image compression, which reduces images to a small set of perceptually-significant coefficients. We describe three types of Photobook descriptions in detail: one that allows search based on appearance, one that uses 2-D shape, and a third that allows search based on textural properties. These image content descriptions can be combined with each other and with textbased descriptions to provide a sophisticated browsing and search capability. In this paper we demonstrate Photobook on databases containing images of people, video keyframes, hand tools, fish, texture swatches, and 3-D medical data.
Face description with local binary patterns: Application to face recognition
- IEEE Trans. Pattern Analysis and Machine Intelligence
, 2006
"... Abstract—This paper presents a novel and efficient facial image representation based on local binary pattern (LBP) texture features. The face image is divided into several regions from which the LBP feature distributions are extracted and concatenated into an enhanced feature vector to be used as a ..."
Abstract
-
Cited by 526 (27 self)
- Add to MetaCart
(Show Context)
Abstract—This paper presents a novel and efficient facial image representation based on local binary pattern (LBP) texture features. The face image is divided into several regions from which the LBP feature distributions are extracted and concatenated into an enhanced feature vector to be used as a face descriptor. The performance of the proposed method is assessed in the face recognition problem under different challenges. Other applications and several extensions are also discussed. Index Terms—Facial image representation, local binary pattern, component-based face recognition, texture features, face misalignment. Ç 1
Using Discriminant Eigenfeatures for Image Retrieval
, 1996
"... This paper describes the automatic selection of features from an image training set using the theories of multi-dimensional linear discriminant analysis and the associated optimal linear projection. We demonstrate the effectiveness of these Most Discriminating Features for view-based class retrieval ..."
Abstract
-
Cited by 508 (15 self)
- Add to MetaCart
(Show Context)
This paper describes the automatic selection of features from an image training set using the theories of multi-dimensional linear discriminant analysis and the associated optimal linear projection. We demonstrate the effectiveness of these Most Discriminating Features for view-based class retrieval from a large database of widely varying real-world objects presented as "well-framed" views, and compare it with that of the principal component analysis.