Results 1 - 10
of
138
Hierarchical Face Clustering on Polygonal Surfaces
, 2001
"... Many graphics applications, and interactive systems in particular, rely on hierarchical surface representations to efficiently process very complex models. Considerable attention has been focused on hierarchies of surface approximations and their construction via automatic surface simplifi ..."
Abstract
-
Cited by 143 (1 self)
- Add to MetaCart
Many graphics applications, and interactive systems in particular, rely on hierarchical surface representations to efficiently process very complex models. Considerable attention has been focused on hierarchies of surface approximations and their construction via automatic surface simplification. Such representations have proven effective for adapting the level of detail used in real time display systems. However, other applications such as raytracing, collision detection, and radiosity benefit from an alternative multiresolution framework: hierarchical partitions of the original surface geometry. We present a new method for representing a hierarchy of regions on a polygonal surface which partition that surface into a set of face clusters. These clusters, which are connected sets of faces, represent the aggregate properties of the original surface a different scales rather than providing geometric approximations of varying complexity. We also describe the combination of an effective error metric and a novel algorithm for constructing these hierarchies.
Representing Animations by Principal Components
- EUROGRAPHICS 2000
, 2000
"... In this paper, we present a representation for three-dimensional geometric animation sequences. Different from standard key-frame techniques, this approach is based on the determination of principal animation components and decouples the animation from the underlying geometry. The new representati ..."
Abstract
-
Cited by 125 (4 self)
- Add to MetaCart
In this paper, we present a representation for three-dimensional geometric animation sequences. Different from standard key-frame techniques, this approach is based on the determination of principal animation components and decouples the animation from the underlying geometry. The new representation supports progressive animation compression with spatial, as well as temporal, level-of-detail and high compression ratios. The distinction of animation and geometry allows for mapping animations onto other objects.
Harmonic functions for quadrilateral remeshing of arbitrary manifolds
- COMPUTER-AIDED GEOMETRIC DESIGN
, 2005
"... In this paper, we propose a new quadrilateral remeshing method for manifolds of arbitrary genus that is at once general, flexible, and efficient. Our technique is based on the use of smooth harmonic scalar fields defined over the mesh. Given such a field, we compute its gradient field and a second v ..."
Abstract
-
Cited by 73 (2 self)
- Add to MetaCart
(Show Context)
In this paper, we propose a new quadrilateral remeshing method for manifolds of arbitrary genus that is at once general, flexible, and efficient. Our technique is based on the use of smooth harmonic scalar fields defined over the mesh. Given such a field, we compute its gradient field and a second vector field that is everywhere orthogonal to the gradient. We then trace integral lines through these vector fields to sample the mesh. The two nets of integral lines together are used to form the polygons of the output mesh. Curvature-sensitive spacing of the lines provides for anisotropic meshes that adapt to the local shape. Our scalar field construction allows users to exercise extensive control over the structure of the final mesh. The entire process is performed without computing an explicit parameterization of the surface, and is thus applicable to manifolds of any genus without the need for cutting the surface into patches.
Efficient Adaptive Simplification of Massive Meshes
, 2001
"... The growing availability of massive polygonal models, and the inability of most existing visualization tools to work with such data, has created a pressing need for memory efficient methods capable of simplifying very large meshes. In this paper, we present a method for performing adaptive simplific ..."
Abstract
-
Cited by 59 (2 self)
- Add to MetaCart
The growing availability of massive polygonal models, and the inability of most existing visualization tools to work with such data, has created a pressing need for memory efficient methods capable of simplifying very large meshes. In this paper, we present a method for performing adaptive simplification of polygonal meshes that are too large to fit in-core.
Measuring and Predicting Visual Fidelity
, 2001
"... This paper is a study of techniques for measuring and predicting visual fidelity. As visual stimuli we use polygonal models, and vary their fidelity with two different model simplification algorithms. We also group the stimuli into two object types: animals and man made artifacts. We examine three d ..."
Abstract
-
Cited by 58 (0 self)
- Add to MetaCart
This paper is a study of techniques for measuring and predicting visual fidelity. As visual stimuli we use polygonal models, and vary their fidelity with two different model simplification algorithms. We also group the stimuli into two object types: animals and man made artifacts. We examine three different experimental techniques for measuring these fidelity changes: naming times, ratings, and preferences. All the measures were sensitive to the type of simplification and level of simplification. However, the measures differed from one another in their response to object type. We also examine several automatic techniques for predicting these experimental measures, including techniques based on images and on the models themselves. Automatic measures of fidelity were successful at predicting experimental ratings, less successful at predicting preferences, and largely failures at predicting naming times. We conclude with suggestions for use and improvement of the experimental and automatic measures of visual fidelity.
Survey on Semi-Regular Multiresolution Models for Interactive Terrain Rendering
"... Abstract Rendering high quality digital terrains at interactive rates requires carefully crafted algorithms and data structures able to balance the competing requirements of realism and frame rates, while taking into account the memory and speed limitations of the underlying graphics platform. In th ..."
Abstract
-
Cited by 49 (1 self)
- Add to MetaCart
(Show Context)
Abstract Rendering high quality digital terrains at interactive rates requires carefully crafted algorithms and data structures able to balance the competing requirements of realism and frame rates, while taking into account the memory and speed limitations of the underlying graphics platform. In this survey, we analyze multi-resolution approaches that exploit a certain semi-regularity of the data. These approaches have produced some of the most efficient systems to date. After providing a short background and motivation for the methods, we focus on illustrating models based on tiled blocks and nested regular grids, quadtrees and triangle bin-trees triangulations, as well as cluster based approaches. We then discuss LOD error metrics and system-level data management aspects of interactive terrain visualization, including dynamic scene management, out-of-core data organization and compression, as well as numerical accuracy.
Recent advances in remeshing of surfaces
- Shape Analysis and Structuring, Mathematics and Visualization
, 2008
"... Summary. Remeshing is a key component of many geometric algorithms, including modeling, editing, animation and simulation. As such, the rapidly developing field of geometry processing has produced a profusion of new remeshing techniques over the past few years. In this paper we survey recent develop ..."
Abstract
-
Cited by 44 (1 self)
- Add to MetaCart
Summary. Remeshing is a key component of many geometric algorithms, including modeling, editing, animation and simulation. As such, the rapidly developing field of geometry processing has produced a profusion of new remeshing techniques over the past few years. In this paper we survey recent developments in remeshing of surfaces, focusing mainly on graphics applications. We classify the techniques into five categories based on their end goal: structured, compatible, high quality, feature and error-driven remeshing. We limit our description to the main ideas and intuition behind each technique, and a brief comparison between some of the techniques. We also list some open questions and directions for future research. 1
Efficient linear system solvers for mesh processing
- IMA CONFERENCE ON THE MATHEMATICS OF SURFACES. VOLUME 3604 OF LECTURE NOTES IN COMPUTER SCIENCE
, 2005
"... The use of polygonal mesh representations for freeform geometry enables the formulation of many important geometry processing tasks as the solution of one or several linear systems. As a consequence, the key ingredient for efficient algorithms is a fast procedure to solve linear systems. A large c ..."
Abstract
-
Cited by 42 (4 self)
- Add to MetaCart
The use of polygonal mesh representations for freeform geometry enables the formulation of many important geometry processing tasks as the solution of one or several linear systems. As a consequence, the key ingredient for efficient algorithms is a fast procedure to solve linear systems. A large class of standard problems can further be shown to lead more specifically to sparse, symmetric, and positive definite systems, that allow for a numerically robust and efficient solution. In this paper we discuss and evaluate the use of sparse direct solvers for such kind of systems in geometry processing applications, since in our experiments they turned out to be superior even to highly optimized multigrid methods, but at the same time were considerably easier to use and implement. Although the methods we present are well known in the field of high performance computing, we observed that they are in practice surprisingly rarely applied to geometry processing problems.
Quadric-based simplification in any dimension
- ACM TRANS GRAPH
, 2005
"... We present a new method for simplifying simplicial complexes of any type embedded in Euclidean spaces of any dimension. At the heart of this system is a novel generalization of the quadric error metric used in surface simplification. We demonstrate that our generalized simplification system can pr ..."
Abstract
-
Cited by 42 (3 self)
- Add to MetaCart
(Show Context)
We present a new method for simplifying simplicial complexes of any type embedded in Euclidean spaces of any dimension. At the heart of this system is a novel generalization of the quadric error metric used in surface simplification. We demonstrate that our generalized simplification system can produce high quality approximations of plane and space curves, triangulated surfaces, and tetrahedralized volume data. Our method is both efficient and easy to implement. It is capable of processing complexes of arbitrary topology, including non-manifolds, and can preserve intricate boundaries.