Results 1 
3 of
3
New results in linear filtering and prediction theory
 TRANS. ASME, SER. D, J. BASIC ENG
, 1961
"... A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary sta ..."
Abstract

Cited by 581 (0 self)
 Add to MetaCart
A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary statistics. The variance equation is closely related to the Hamiltonian (canonical) differential equations of the calculus of variations. Analytic solutions are available in some cases. The significance of the variance equation is illustrated by examples which duplicate, simplify, or extend earlier results in this field. The Duality Principle relating stochastic estimation and deterministic control problems plays an important role in the proof of theoretical results. In several examples, the estimation problem and its dual are discussed sidebyside. Properties of the variance equation are of great interest in the theory of adaptive systems. Some aspects of this are considered briefly.
Series Estimation of . . . Developments and Econometric Applications
, 2012
"... This paper overviews recent developments in series estimation of stochastic processes and some of their applications in econometrics. Underlying this approach is the idea that a stochastic process may under certain conditions be represented in terms of a set of orthonormal basis functions, giving a ..."
Abstract
 Add to MetaCart
This paper overviews recent developments in series estimation of stochastic processes and some of their applications in econometrics. Underlying this approach is the idea that a stochastic process may under certain conditions be represented in terms of a set of orthonormal basis functions, giving a series representation that involves deterministic functions. Several applications of this series approximation method are discussed. The …rst shows how a continuous function can be approximated by a linear combination of Brownian motions (BMs), which is useful in the study of the spurious regressions. The second application utilizes the series representation of BM to investigate the e¤ect of the presence of deterministic trends in a regression on traditional unitroot tests. The third uses basis functions in the series approximation as instrumental variables (IVs) to perform efficient estimation of the parameters in cointegrated systems. The fourth application proposes alternative estimators of longrun variances in some econometric models with dependent data, thereby providing autocorrelation robust inference methods in these models. We