Results 1  10
of
42
Metaheuristics in combinatorial optimization: Overview and conceptual comparison
 ACM COMPUTING SURVEYS
, 2003
"... The field of metaheuristics for the application to combinatorial optimization problems is a rapidly growing field of research. This is due to the importance of combinatorial optimization problems for the scientific as well as the industrial world. We give a survey of the nowadays most important meta ..."
Abstract

Cited by 294 (16 self)
 Add to MetaCart
The field of metaheuristics for the application to combinatorial optimization problems is a rapidly growing field of research. This is due to the importance of combinatorial optimization problems for the scientific as well as the industrial world. We give a survey of the nowadays most important metaheuristics from a conceptual point of view. We outline the different components and concepts that are used in the different metaheuristics in order to analyze their similarities and differences. Two very important concepts in metaheuristics are intensification and diversification. These are the two forces that largely determine the behaviour of a metaheuristic. They are in some way contrary but also complementary to each other. We introduce a framework, that we call the I&D frame, in order to put different intensification and diversification components into relation with each other. Outlining the advantages and disadvantages of different metaheuristic approaches we conclude by pointing out the importance of hybridization of metaheuristics as well as the integration of metaheuristics and other methods for optimization.
An Overview of Evolutionary Computation
, 1993
"... Evolutionary computation uses computational models of evolutionary processes as key elements in the design and implementation of computerbased problem solving systems. In this paper we provide an overview of evolutionary computation, and describe several evolutionary algorithms that are current ..."
Abstract

Cited by 145 (5 self)
 Add to MetaCart
Evolutionary computation uses computational models of evolutionary processes as key elements in the design and implementation of computerbased problem solving systems. In this paper we provide an overview of evolutionary computation, and describe several evolutionary algorithms that are currently of interest. Important similarities and differences are noted, which lead to a discussion of important issues that need to be resolved, and items for future research.
Rapid, Accurate Optimization of Difficult Problems Using Fast Messy Genetic Algorithms
 Proceedings of the Fifth International Conference on Genetic Algorithms
, 1993
"... Researchers have long sought genetic algorithms (GAs) that can solve difficult search, optimization, and machine learning problems quickly. Despite years of work on simple GAs and their variants it is still unknown how difficult a problem simple GAs can solve, how quickly they can solve it, and with ..."
Abstract

Cited by 118 (24 self)
 Add to MetaCart
Researchers have long sought genetic algorithms (GAs) that can solve difficult search, optimization, and machine learning problems quickly. Despite years of work on simple GAs and their variants it is still unknown how difficult a problem simple GAs can solve, how quickly they can solve it, and with what reliability. More radical design departures than these have been taken, however, and the messy GA (mGA) approach has attempted to solve problems of bounded difficulty quickly and reliably by taking the notion of buildingblock linkage quite seriously. Early efforts were apparently successful in achieving polynomial convergence on some difficult problems, but the initialization bottleneck that required a large initial population was thought to be the primary obstacle to faster mGA performance. This paper replaces the partially enumerative initialization and selective primordial phase of the original messy GA with probabilistically complete initialization and a primordial phase that per...
Deception Considered Harmful
 Foundations of Genetic Algorithms 2
, 1992
"... A central problem in the theory of genetic algorithms is the characterization of problems that are difficult for GAs to optimize. Many attempts to characterize such problems focus on the notion of Deception, defined in terms of the static average fitness of competing schemas. This article examines t ..."
Abstract

Cited by 81 (0 self)
 Add to MetaCart
A central problem in the theory of genetic algorithms is the characterization of problems that are difficult for GAs to optimize. Many attempts to characterize such problems focus on the notion of Deception, defined in terms of the static average fitness of competing schemas. This article examines the Static Building Block Hypothesis (SBBH), the underlying assumption used to define Deception. Exploiting contradictions between the SBBH and the Schema Theorem, we show that Deception is neither necessary nor sufficient for problems to be difficult for GAs. This article argues that the characterization of hard problems must take into account the basic features of genetic algorithms, especially their dynamic, biased sampling strategy. Keywords: Deception, building block hypothesis 1 INTRODUCTION Since Holland's early work on the analysis of genetic algorithms (GAs), the usual approach has been to focus on the allocation of search effort to subspaces described by schemas representing hyper...
Genetic Algorithm Difficulty and the Modality of Fitness Landscapes
 Foundations of Genetic Algorithms 3
, 1994
"... We assume that the modality (i.e., number of local optima) of a fitness landscape is related to the difficulty of finding the best point on that landscape by evolutionary computation (e.g., hillclimbers and genetic algorithms (GAs)). We first examine the limits of modality by constructing a unimodal ..."
Abstract

Cited by 64 (2 self)
 Add to MetaCart
We assume that the modality (i.e., number of local optima) of a fitness landscape is related to the difficulty of finding the best point on that landscape by evolutionary computation (e.g., hillclimbers and genetic algorithms (GAs)). We first examine the limits of modality by constructing a unimodal function and a maximally multimodal function. At such extremes our intuition breaks down. A fitness landscape consisting entirely of a single hill leading to the global optimum proves to be hard for hillclimbers but apparently easy for GAs. A provably maximally multimodal function, in which half the points in the search space are local optima, can be easy for both hillclimbers and GAs. Exploring the more realistic intermediate range between the extremes of modality, we construct local optima with varying degrees of "attraction" to our evolutionary algorithms. Most work on optima and their basins of attraction has focused on hills and hillclimbers, while some research has explored attraction...
Hierarchical Learning with Procedural Abstraction Mechanisms
, 1997
"... Evolutionary computation (EC) consists of the design and analysis of probabilistic algorithms inspired by the principles of natural selection and variation. Genetic Programming (GP) is one subfield of EC that emphasizes desirable features such as the use of procedural representations, the capability ..."
Abstract

Cited by 37 (2 self)
 Add to MetaCart
Evolutionary computation (EC) consists of the design and analysis of probabilistic algorithms inspired by the principles of natural selection and variation. Genetic Programming (GP) is one subfield of EC that emphasizes desirable features such as the use of procedural representations, the capability to discover and exploit intrinsic characteristics of the application domain, and the flexibility to adapt the shape and complexity of learned models. Approaches that learn monolithic representations are considerably less likely to be effective for complex problems, and standard GP is no exception. The main goal of this dissertation is to extend GP capabilities with automatic mechanisms to cope with problems of increasing complexity. Humans succeed here by skillfully using hierarchical decomposition and abstraction mechanisms. The translation of such mechanisms into a general computer implementation is a tremendous challenge, which requires a firm understanding of the interplay between repr...
The nature of niching: genetic algorithms and the evolution of optimal, cooperative populations
, 1997
"... ..."
(Show Context)
On Evolvable Hardware
 in Soft Computing in Industrial Electronics, S. Ovaska and L. Sztandera
, 2002
"... FPGAs. ..."
(Show Context)
Gene Expression and Fast Construction of Distributed Evolutionary Representation
 Evolutionary Computation
, 2001
"... The gene expression process in nature produces different proteins in different cells from different portions of the DNA. Since proteins control almost every important activity in a living organism, at an abstract level, gene expression can be viewed as a process that evaluates the merit or "fit ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
The gene expression process in nature produces different proteins in different cells from different portions of the DNA. Since proteins control almost every important activity in a living organism, at an abstract level, gene expression can be viewed as a process that evaluates the merit or "fitness" of the DNA. This distributed evaluation of the DNA would not be possible without a decomposed representation of the fitness function defined over the DNAs. This paper argues that, unless the living body was provided with such a representation, we have every reason to believe that it must have an efficient mechanism to construct this distributed representation. This paper demonstrates polynomialtime computability of such a representation by proposing a class of efficient algorithms. The main contribution of this paper is twofold. On the algorithmic side, it offers a way to scale up evolutionary search by detecting the underlying structure of the search space. On the biological side, it proves that the distributed representation of the evolutionary fitness function in gene expression can be computed in polynomialtime.
Applying SelfOrganised Criticality to Evolutionary Algorithms
"... Complex systems are typically composed of a large number of locally interacting components that operate at a critical state between chaos and order, which is known as selforganised criticality. A common feature of this state is the exponential (power law) relationship between the frequency of an ev ..."
Abstract

Cited by 17 (8 self)
 Add to MetaCart
(Show Context)
Complex systems are typically composed of a large number of locally interacting components that operate at a critical state between chaos and order, which is known as selforganised criticality. A common feature of this state is the exponential (power law) relationship between the frequency of an event and the size of its impact, such as the event of an earthquake and its strength on the Richter scale. Most state transitions in a component of a complex system only affect its neighbourhood, but once in a while entire avalanches of propagating state transitions can lead to a major recon guration of the system. In evolution, this system behaviour has been identified in species extinction on an evolutionary timescale, where avalanches correspond to mass extinction. In this paper, we applied the concept of selforganised criticality (SOC) to control mutation on the individual level and extinction on the population level in the context of evolutionary algorithms (EA). Our resul...